Functional characterization of some semantic equalities inside λ-calculus

  • M. Coppo
  • M. Dezani-Ciancaglini
  • P. Salle'
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 71)


Both (operational or denotational) semantics and type theories for λ-calculus induce in a natural way equivalence relations between terms. The aim of the present paper is to show that in some cases the semantic and functional equivalences coincide.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Barendregt, G. Longo, Equality of Lambda Terms and Recursion Theoretic Reducibility in the Model Tω, Preprint n. 107, University Utrecht, (1979).Google Scholar
  2. [2]
    C. Böhm, The CUCH as a Formal and Description Language, in Formal Language Description Languages for Computer Programming, ed. T.B. Steel, North-Holland, Amsterdam, (1966), 179–197.Google Scholar
  3. [3]
    C. Böhm, Alcune proprietà della forma β-η-normali del λ-ϰ-calcolo, Pubbl. IAC-CNR n. 696, Roma, (1968).Google Scholar
  4. [4]
    M. Coppo, M. Dezani-Ciancaglini, A New Type Assignment for λ-terms, in Archiv für Math. Logik und Grundlageforshung, 19, (1978), 1–17.Google Scholar
  5. [5]
    M. Coppo, M. Dezani-Ciancaglini, B. Venneri, Functional Characters of Solvable Terms, Internal Report, Turin University.Google Scholar
  6. [6]
    H.B. Curry, R. Feys, Combinatory Logic, Vol. 1, North-Holland, Amsterdam, (1968).Google Scholar
  7. [7]
    H.B. Curry, R. Hindley, J.P. Seldin, Combinatory Logic, 2, North-Holland, Amsterdam, (1972).Google Scholar
  8. [8]
    J.M.E. Hyland, A Survey of Some Useful Partial Order Relations on Terms of the λ-calculus in: λ-calculus and Computer Science Theory, ed. C. Böhm, Lecture Notes in Computer Science, 37, Springer-Verlag, (1975), 83–95.Google Scholar
  9. [9]
    J.M.E. Hyland, A Syntactic Characterization of the Equality in Some Models of the λ-calculus, J. London Math. Soc. 12 (2), (1976), 361–370.Google Scholar
  10. [10]
    J.H. Morris, λ-calculus Models of Programming Languages, Ph.D.thesis, MIT, Cambridge, (1968).Google Scholar
  11. [11]
    G. Plotkin, Tω as a Universal Domain, D.A.I. Research report N.28, University of Edinburgh, (1977).Google Scholar
  12. [12]
    G. Plotkin, A Set-Theoretical Definition of Application, School of A.I., Memo MIP-R-95, Edinburgh, (1972).Google Scholar
  13. [13]
    P. Sallé, Une Extension de la Théorie des Types en λ-calcul, in: Automata, Languages and Programming, ed. s G. Ausiello and C. Böhm, Lecture Notes in Computer Science, 62, (1978), 398–41.Google Scholar
  14. [14]
    P. Sallé, Une Generalisation de la Théorie des Types, to appear in R.A.I.R.O., Informatique Theorique.Google Scholar
  15. [15]
    D. Scott, Continous Lattices, Lecture Notes in Mathematics, in: Toposes, Algebraic Geometry and Logic, ed. F.W. Lawvere, n. 274, Springer-Verlag, (1972), 97–136.Google Scholar
  16. [16]
    D. Scott, Data Types as Lattices, SIAM J. Comput., Vol. 5, n. 3, (1976), 522–587.Google Scholar
  17. [17]
    C.P. Wadsworth, The Relation between Computational and Denotational Properties for Scott's D-Models of the λ-calculus, SIAM J. Comput., Vol. 5, n. 3, (1976), 488–521.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • M. Coppo
    • 1
  • M. Dezani-Ciancaglini
    • 1
  • P. Salle'
    • 2
  1. 1.Istituto di Scienza dell'InformazioneUniversità di TorinoTorinoItaly
  2. 2.Laboratoire Langages et Systèmes InformatiquesUniversité Paul SabatierToulouseFrance

Personalised recommendations