Advertisement

Two-dimensional recursive filtering

  • R. R. Read
  • J. L. Shanks
  • S. Treitel
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 6)

Keywords

Unit Circle Unit Disk Discrete Fourier Transform Amplitude Response Amplitude Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1.
    T. H. Huang: IEEE Trans. Audio Electroacoust. AU-20, 158 (1972)Google Scholar
  2. 4.2.
    G. A. Bliss: Algebraic Functions (Am. Math. Soc., New York 1933).Google Scholar
  3. 4.3.
    B. D. O. Anderson, E. D. Jury: IEEE Trans. Audio Electroacoust. AU-21, 366 (1973).Google Scholar
  4. 4.4.
    H. G. Amsel: IEEE Trans. Circuit Theory CT-11, 214 (1964)Google Scholar
  5. 4.5.
    A. Cohn: Math. J. 14, 110 (1922).Google Scholar
  6. 4.6.
    M. Fujiwara: Math. J. 24, 160 (1926).Google Scholar
  7. 4.7.
    E.I. Jury: Theory and Application of the z-transform Method (J. Wiley, New York, 1964)Google Scholar
  8. 4.8.
    S. Barnett: Matrices in Control Theory (Van Nostrand-Reinhold, London, 1971)Google Scholar
  9. 4.9.
    J. H. Justice, J. L. Shanks: IEEE Trans. Automatic Control AC-18, 284 (1973).Google Scholar
  10. 4.10.
    J. L. Shanks, S. Treitel, J. H. Justice: IEEE Trans. Audio Electroacoust. AU-20, 115 (1972).Google Scholar
  11. 4.11.
    K. J. Åstrom: Introduction to Stochastic Control Theory (Academic Press, New York, 1970).Google Scholar
  12. 4.12.
    E. I. Jury: IEEE Trans. Circuit Theory CT-11, 292 (1964).Google Scholar
  13. 4.13.
    C. M. Rader, B. Gold: Proc. IEEE 55, 149 (1967).Google Scholar
  14. 4.14.
    R. M. Golden, J. F. Kaiser: Bell Syst. Tech. J. 43, 1533 (1964).Google Scholar
  15. 4.15.
    V. A. Ditkin, A. P. Prudnikov: Operational Calculus in Two Variables (English translation by D. M. G. Wishart) (Pergamon Press, New York, 1962).Google Scholar
  16. 4.16.
    R. G. Brown, J. W. Nilsson: Introduction to Linear Systems Analysis (J. Wiley, New York, 1962), pp. 121–125.Google Scholar
  17. 4.17.
    J. L. Shanks: Geophysics 32, 33 (1967).Google Scholar
  18. 4.18.
    C. S. Burrus, T. W. Parks: IEEE Trans. Audio Electroacoust. AU-18, 137 (1970).Google Scholar
  19. 4.19.
    T. W. Parks, C. S. Burrus: “Applications and extensions of Prony's method to parameter identification and digital filtering”, presented at 5th Princeton Conf. Inform. Sci. Syst. (March 1971).Google Scholar
  20. 4.20.
    R. A. Wiggins: “On factoring the correlations of discrete multivariable stochastic processes”, MIT Sci. Rep. 9 of Contract AF 19(604) 7378, pp. 127–152, 1965. Also, Ph. D. Thesis, Dept. of Geology and Geophysics, MIT (March 1965).Google Scholar
  21. 4.21.
    R. Fletcher, M. J. D. Powell: Computer J. 6, 163 (1963).Google Scholar
  22. 4.22.
    System/360 Scientific Subroutine Package (360-CM-03X) Version III, Programmer's Manual, Docmt. H20-0205-3 IBM Data Proc. Div., White Plains, New York, U.S.A. (1968).Google Scholar
  23. 4.23.
    H. G. Ansell: IEEE Trans. Circuit Theory CT-11, 214 (1964).Google Scholar
  24. 4.24.
    T. S. Huang: Private communication (March 1971).Google Scholar
  25. 4.25.
    E. A. Robinson: Statistical Communication and Detection (Hafner Publishing Company, New York, 1967), pp. 173–174.Google Scholar
  26. 4.26.
    R. Read, S. Treitel: IEEE Trans. Geoscience Electronics GE-11, 153 and 205 (1973).Google Scholar
  27. 4.27.
    B. Gold, C. M. Rader: Digital Processing of Signals (McGraw-Hill Book Co., New York, 1969).Google Scholar
  28. 4.28.
    D. E. Dudgeon: “Two-dimensional recursive filtering”, Ph. D. dissertation, Dept. of Electr. Engg., MIT (May 1974).Google Scholar

Further References with Titles

  1. 4.29.
    N. K. Bose, P. S. Kamat: Algorithm for stability test of multi-dimensional filters. IEEE Trans. Acoustics, Speech, Signal Proc. ASSP-22, No. 5 (1974).Google Scholar
  2. 4.30.
    N. K. Bose, E. I. Jury: Positivity and stability test for multi-dimensional filters (discretecontinuous). IEEE Trans. Acoustics, Speech, Signal Proc. ASSP-22, No. 3 (1974).Google Scholar
  3. 4.31.
    J. M. Costa, A. N. Venetsanopoulos: Design of circularly symmetric two-dimensional recursive filters. IEEE Trans. Acoustics, Speech. Signal Proc. ASSP-22, No. 6 (1974).Google Scholar
  4. 4.32.
    E. I. Jury: The theory and applications of the inners. IEEE Proc. 63, No. 7, 1044–1068 (1975).Google Scholar
  5. 4.33.
    G. A. Maria, M. M. Fahmy: On the stability of two-dimensional digital filters. IEEE Trans. Audio Electroacoustics AU-21, 470–472 (1973).Google Scholar
  6. 4.34.
    G. A. Maria, M. M. Fahmy: An Lp design technique for two-dimensional digital recursive filters. IEEE Trans. Acoustics, Speech, Signal Proc. ASSP-22, No. 1 (1974).Google Scholar
  7. 4.35.
    R. M. Mersereau, D. E. Dudgeon: The representation of two-dimensional sequences as one-dimensional sequences. IEEE Trans. Acoustics, Speech, Signal Proc. ASSP-22, No. 5 (1974).Google Scholar
  8. 4.36.
    S. K. Mitra, A. D. Sagar, N. A. Pendergras: Realizations of two-dimensional recursive digital filters. IEEE Trans. Circuits and Systems CAS-22, No. 3 (1975).Google Scholar
  9. 4.37.
    M.-D. Ni, J. K.Aggarwal: Two-dimensional digital filtering and its error analysis. IEEE Trans. Computers C-23, No. 9 (1974).Google Scholar
  10. 4.38.
    D. D. Siljak: Stability for two-variable polynomials. IEEE Trans. Circuits and Systems CAS-22, No. 3 (1975).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • R. R. Read
  • J. L. Shanks
  • S. Treitel

There are no affiliations available

Personalised recommendations