Non-linear transport equations : Properties deduced through transformation groups

  • J. Gutierrez
  • A. Munier
  • J. R. Burgan
  • M. R. Feix
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 98)


Transport equations in configuration space (linear and non-linear heat equations) and in phase space (Vlasov-Poisson systems for plasmas, beams and gravitating gases) are considered in the frame of transformation group techniques. Both self-similar and more qeneral groups are introduced to find specially interesting solutions. Two kinds of results are obtained time evolution of given initial situations and systematic derivation of possible scaling laws for a given mathematical model. These last results are specially interesting for extrapolating performances of Fusion Machines.


Arbitrary Parameter Invariant Solution Partial Invariance Confinement Time Small Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Kalman; Annals of Physics 10, 1, (1960)Google Scholar
  2. 2.
    R. Balescu: “Statistical mechanics of charged particles”. Wiley and Sons (London 1963)Google Scholar
  3. 3.
    D. Anderson, A. Bondeson, M. Lisak, R. Nakach and H. Wilhelmsson: EUR-CEA. FC 925 (October 1977). To be published in Physica Scripta.Google Scholar
  4. 4.
    F. Grant and M.R. Feix: Physics of Fluids 10, 696 (1967)Google Scholar
  5. 5.
    H.L. Berk and K.V. Roberts: Physics of Fluids 10, 1595 (1967)Google Scholar
  6. 6.
    S. Lie: “Theorie der transformations gruppen” I, II, III. Chelsea Publ. Company. (New-York 1970)Google Scholar
  7. 7.
    L.V. Ovsjannikov: “Group properties of differential equations” Translated by G. Bluman (1967), Cal. Inst. of Tech.Google Scholar
  8. 8.
    W.F. Ames: “Non-linear partial differential equations in engineering”, Vol II, Academic Press (1972)Google Scholar
  9. 9.
    H.S. Woodard: “Similarity solutions for partial differential equations generated by finite and infinitesimal group”. PHD Thesis University of Iowa (1971)Google Scholar
  10. 10.
    G.W. Bluman and J.D. Cole: “Similarity methods for differential equations”. Appl. Math. Sci. 13 Springer Verlag, N.Y. Heidelberg BerlinGoogle Scholar
  11. 11.
    J.R. Burgan, J. Gutiérrez, E. Fijalkow, M. Navet and M.R. Feix Journal de Physique Lettres 38 161 (1977)Google Scholar
  12. 12.
    W.F. Ames: “Non-linear partial differential equations in engineering”. Vol I page 153 Academic Press (1965). The solutions obtained in this reference are found with particular auxilary conditionsGoogle Scholar
  13. 13.
    N.N. Bogoliubov: “Studies in Statistical Mechanics” (Translated by E.K. Gora), Part A, Vol I. North Holland Publishing Co. (Amsterdam 1962)Google Scholar
  14. 14.
    N. Rostoker and M.N. Rosenbluth: Physics of Fluids 3, 1 (1960)Google Scholar
  15. 15.
    J.R. Burgan, J. Gutierrez, E. Fijalkow, M. Navet and M.R. Feix: J. Plasma Physics 19, 135 (1978)Google Scholar
  16. 16.
    A. Munier, M.R. Feix, E. Fijalkow, J.R. Burgan, J. Gutierrez “Time dependent solutions for a self gravitating star system”. Presented to publication.Google Scholar
  17. 17.
    J.W. Connor and J.B. Taylor: Nuclear Fusion, 17, 1047 (1977)Google Scholar
  18. 18.
    J.W. Connor and J.B. Taylor: Private communicationGoogle Scholar
  19. 19.
    E.D. Courant and H.S. Snyder: Annals of Physics 3, 1 (1958)Google Scholar
  20. 20.
    H.R. Lewis and W.B. Riesenfeld: Journal of Mathematical Physics 10, 1458 (1968)Google Scholar
  21. 21.
    J.R. Burgan, J. Gutierrez, A. Munier, E.. Fijalkow and M.R. Feix: “Group transformations for phase space fluids”. Note technique CRPE/47, page 9 (C.R.P.E./P.C.E. Orléans 1977)Google Scholar
  22. 22.
    J.R. Burgan: “Sur des groupes de transformation en physique mathematique” P.H.D. Thesis. Université d'Orléans (1978)Google Scholar
  23. 23.
    J.R. Burgan, M.R. Feix, E. Fijalkow, J. Gutiérrez, A. Munier “Utilisation des groupes de transformation pour la resolution des équations aux derives partielles”. Proceedings de la première rencontre interdisciplinaire sur les problèmes inverses. Springer Verlag (1978).Google Scholar
  24. 24.
    G.L. Camm: Self gravitating star systems. Mont. Not. Roy. Soc., 110, 306 (1949); 112, 155, (1951).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. Gutierrez
    • 1
  • A. Munier
    • 1
    • 2
  • J. R. Burgan
    • 1
  • M. R. Feix
    • 1
  1. 1.CRPE/CNRSUniversite d'OrleansFrance
  2. 2.Compagnie Internationale de Services en Informatique ParisFrance

Personalised recommendations