Mathematical aspects of classical nonlinear field equations

  • W. Strauss
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 98)


Light Cone Free Solution Finite Energy Existence Question Relativistic Wave Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Y. Chias, E. Garmire and C.H. Townes, Phys. Rev. Lett. 13 (1964), 479–482.Google Scholar
  2. 2.
    P.L. Kelley, Phys. Rev. Lett. 15 (1965), 1005–1012Google Scholar
  3. 2a.
    V.I. Talanov, JETP Lett. 2 (1965), 138–141.Google Scholar
  4. 3.
    J.B. Baillon, T. Cazenave and M. Figueira, C.R. Acad. Sci. 284 (1977), 869–872.Google Scholar
  5. 4.
    W.A. Strauss, Anais Acad. Brasil. Ciencias 42 (1970), 645–651.Google Scholar
  6. 5.
    W.A. Strauss, Comm. Math. Phys. 55 (1977), 149–162.Google Scholar
  7. 6.
    W.A. Strauss and L. Vázquez, to appear.Google Scholar
  8. 7.
    H. Berestycki and P.L. Lions, to appear.Google Scholar
  9. 8.
    W.A. Strauss, in Invariant Wave Equations, Erice 1977, Springer Lect.Notes in Physics no.73, p.197–249.Google Scholar
  10. 9.
    W.A. Strauss and L. Väzquez, J. Comp. Phys. 28, (1978), 271–278.Google Scholar
  11. 10.
    M. Reed, Abstract Nonlinear Wave Equations, Springer Lect. Notes in Math. No. 507, 1976.Google Scholar
  12. 11.
    R.T. Glassey and W.A. Strauss, Conservation laws for the classical Maxwell-Dirac and Klein-Gordon-Dirac equation, J. Math. Phys., to appear.Google Scholar
  13. 12.
    L. Gross, Comm. Pure Appl. Math. 19 (1966), 1–15.Google Scholar
  14. 13.
    I.E. Segal, The Cauchy problem for the Yang-Mills equations, to appear.Google Scholar
  15. 14.
    J. Hughes, T. Kato and J. Marsden, Arch. Rat. Mech. Anal. 63 (1977), 273–294.Google Scholar
  16. 15.
    J.M. Chadam, J. Funct. Anal. 13 (1973), 173–184Google Scholar
  17. 15a.
    R.T. Glassey and J.M. Chadam, Proc. A.M.S. 43 (1974), 373–378.Google Scholar
  18. 16.
    S. Klainerman, Global existence for nonlinear wave equations, Ph.D. dissertation, New York Univ. 1978.Google Scholar
  19. 17.
    G.H. Derrick, J. Math. Phys. 5 (1964), 1252.Google Scholar
  20. 18.
    C.S. Morawetz, Comm. Pure Appl. Math. 15 (1962), 349–362Google Scholar
  21. 18a.
    C.S. Morawetz, Notes on Time Decay and Scattering for some Hyperbolic Problems, Soc. Industr. Appl. Math. Philadelphia, 1975.Google Scholar
  22. 19.
    C.S. Morawetz, Proc. Roy. Soc. A306 (1968), 291–296.Google Scholar
  23. 20.
    R.T. Glassy and W.A. Strauss, Decay of Classical Yang-Mills fields, Comm. Math. Phys.; also, Decay of a Yang-Mills field coupled to a scalar field; to appear.Google Scholar
  24. 21.
    J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations, to appear.Google Scholar
  25. 22.
    W.A. Strauss, in Scattering Theory in Math. Phys. Reidel Publ. Co., Dordrecht, 1974, 53–78.Google Scholar
  26. 23.
    C.S. Morawetz and W.A. Strauss, Comm. Pure Appl. Math. 25 (1972), 1–31 and 26 (1973), 47–54.Google Scholar
  27. 24.
    I.E. Segal, Adv. Math. 22 (1976), 305–311Google Scholar
  28. 24a.
    R.S. Strichartz, Duke Math. J. 44 (1977), 705–714.Google Scholar
  29. 25.
    B. Marshall, W. Strauss and S. Wainger, to appear.Google Scholar
  30. 26.
    W.A. Strauss, in Nonlinear Evolution Equations, North-Holland (1978), to appear.Google Scholar
  31. 27.
    A.C. Scott, F.Y.F. Chu, and D.W. McLaughlin, Proc. IEEE 61 (1973), 1443–1483.Google Scholar
  32. 28.
    P. Deift and E. Trabowitz, Comm. Pure Appl. Math., to appear.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • W. Strauss
    • 1
  1. 1.Brown UniversityProvidence

Personalised recommendations