Advertisement

Molecular substitutional disorder in solid solutions of TTF-TCNQ and TSeF-TCNQ

  • H. A. J. Govers
7. Disorder
Part of the Lecture Notes in Physics book series (LNP, volume 96)

Abstract

Molecular substitutional order parameters were calculated for TTF1−xTSeFx-TCNQ ( x= 0, 0.5 and 1 ) at room temperature. A mean-field model was used in combination with the condition of thermodynamic stability. Intermolecular interactions were calculated in the atom-atom approximation.

It could be shown that the mutual substitution of TCNQ and TTF ( or TSeF ) Molecules is highly improbable in accordance to the x-ray structure determinations. On the other hand the TTF0.5TSeF0.5 stacks proved to be disordered completely concerning the mutual substitution of TTF and TSeF molecules. This conclusion supports the assumptions made implicitly by prior investigators. Finally it could be shown that the mixed crystal TTF0.5TSeF0.5-TCNQ is thermodynamically stable against decomposition into 0.5 TTF-TCNQ + 0.5 TSeF-TCNQ.

Keywords

Lattice Energy Mutual Substitution Orientational Disorder Molecular Reorientation TCNQ Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, M.H. Lecture Notes in Physics 65 Organic Conductors and Semiconductors. Springer-Verlag, Berlin (1977) 225–264.Google Scholar
  2. 2.
    Bloch, A.N., Weisman, R.B. & Varma, C.M. Phys. Rev. Lett. 28 ( 1972 ) 753–756.CrossRefGoogle Scholar
  3. 3.
    Kobayashi, H. Bull. Chem. Soc. Jap. 47 ( 1974 ) 1346–1352.Google Scholar
  4. 4.
    Kistenmacher, T.J., Phillips, T.E. & Cowan, D.O. Acta Cryst. B30 ( 1974 ) 763–768.Google Scholar
  5. 5.
    Etemad, S., Engler, E.M., Schultz, T.D., Penney, T. & Scott, B.A. Phys. Rev. B17 ( 1978 ) 513–528.Google Scholar
  6. 6.
    Tomkiewicz, Y., Taranko, A.R. & Engler, E.M. Phys. Rev. Lett. 47 ( 1976 ) 1705–1708.CrossRefGoogle Scholar
  7. 7.
    Engler, E.M., Scott, B.A., Etemad, S., Penney, T. & Patel, V.V. J. Amer. Chem. Soc. 99 ( 1977 ) 5909–5916.CrossRefGoogle Scholar
  8. 8.
    Tomkiewicz, Y., Craven, R.A., Schultz, T.D., Engler, E.M. & Taranko, A.R. Phys. Rev. B15 ( 1977 ) 3643–3651.Google Scholar
  9. 9.
    Etemad, S., Penney, T., Engler, E.M., Scott, B.A. & Seiden, P.E. Phys. Rev. Lett. 34 ( 1975 ) 741–744.CrossRefGoogle Scholar
  10. 10.
    10. Govers H.A.J. Acta Cryst. ( 1978 ) In press.Google Scholar
  11. 11.
    Kitaigorodskii, A.I. Molecular Crystals and Molecules. Acad. Press, New York (1973)Google Scholar
  12. 12.
    Govers, H.A.J. J. Chem. Phys. 67 ( 1977 ) 4199–4205.CrossRefGoogle Scholar
  13. 13.
    Perlstein, J.H. Angew. Chem. 89 ( 1977 ) 534–549.Google Scholar
  14. 14.
    Williams, D.E. J. Chem. Phys. 47 ( 1967 ) 4680–4684.CrossRefGoogle Scholar
  15. 15.
    Govers, H.A.J. Acta Cryst. A31 ( 1975 ) 380–385.Google Scholar
  16. 16.
    Govers, H.A.J. Acta Cryst. ( 1978 ) Accepted for publication.Google Scholar
  17. 17.
    Nauchitel', V.V. & Mirskaya, K.V. Sov. Phys.-Cryst. 16 ( 1972 ) 891–892.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • H. A. J. Govers
    • 1
  1. 1.General Chemistry Laboratory Chemical Thermodynamics GroupRijksuniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations