Advertisement

Magnetic field induced residual resistivity and anisotropic superconductivity in the linear chain compound, Hg3-σAsF6

  • R. Spal
  • D. P. Chakraborty
  • C. K. Chiang
  • A. Denenstein
  • A. J. Heeger
  • A. G. MacDiarmid
6. Incommensurate Lattices and Metallic Chain Compounds
Part of the Lecture Notes in Physics book series (LNP, volume 96)

Abstract

The anisotropic metallic state and superconductivity of this quasi-onedimensional linear chain mercury compound are discussed, and the results of studies of the transport, magnetic and optical properties are reviewed.New results on the resistivity and magneto resistivity have been obtained using contactless ac mutual inductance techniques.These data imply a magnetic field induced residual resistivity which appears to go to zero as the field is reduced to zero.Meissner effect measurements of this anisotropic superconductor have been extended to 0. 28 K; below 0. 4 K the flux exclusion becomes complete with X, approaching -( 1/4π ). Magnetization and transport data in the anisotropic superconducting regime below 4. 1 K are discussed in detail with emphasis on the question of the possible role of free mercury.

Keywords

Residual Resistivity Magnetic Field Dependence Meissner Effect Anisotropic Superconductivity Interchain Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. D. Cutforth, Ph.D. Thesis, McMaster University, Hamilton, Ontario (1975); B. D. Cutforth, W. R. Datars, R. J. Gillespie and A. van Schyndel, Advances in Chemistry Series 150 (1976)Google Scholar
  2. 2.
    I. D. Brown, B. D. Cutforth, C. G. Davies, R. J. Gillespie, P. R. Ireland, and J. E. Vekris, Can. J. Chem. 52, 791 (1974)Google Scholar
  3. 3.
    A. J. Schultz, J. M. Williams, N. D. Miro, A. G. MacDiarmid and A. J. Heeger, Inorganic Chemistry 17, 646 (1978)CrossRefGoogle Scholar
  4. 4.
    B. D. Gillespie, W. R. Datars, A. van Schyndel, and R. J. Gillespie, Solid State Commun. 21, 377 (1976)Google Scholar
  5. 5.
    C. K. Chiang, R. Spal, A. Denenstein, A. J. Heeger, N. D. Miro and A. G. MacDiarmid, Solid State Commun. 22, 293 (1977)CrossRefGoogle Scholar
  6. 6.
    E. S. Koteles, W. R. Datars, B. D. Cutforth, and R. J. Gillespie, Solid State Commun. 20, 1129 (1976)CrossRefGoogle Scholar
  7. 7.
    D. L. Peebles, C. K. Chiang, M. J. Cohen, A. J. Heeger, N. D. Miro, and A. G. MacDiarmid, Phys. Rev. B 15, 4607 (1977)CrossRefGoogle Scholar
  8. 8.
    E. Ehrenfreund, P. R. Newman, A. J. Heeger, N. D. Miro and A. G. MacDiarmid, Phys. Rev. B 16, 1781 (1977); E. Ehrenfreund, J. Kaufe, A. J. Heeger, N. D. Miro and A. G. MacDiarmid, Phys. Rev. (in press)CrossRefGoogle Scholar
  9. 9.
    T. Wei, A. F. Garito, C. K. Chiang and N. D. Miro, Phys. Rev. B 16, 3373 (1977)CrossRefGoogle Scholar
  10. 10.
    R. Spal, C. K. Chiang, A. Denenstein, A. J. Heeger, N. D. Miro and A. G. MacDiarmid, Phys. Rev. Lett. 39, 650 (1977)CrossRefGoogle Scholar
  11. 11.
    J. M. Hastings, J. P. Pouget, G. Shirane, A. J. Heeger, N. D. Miro and A. G. MacDiarmid, Phys. Rev. Lett. 39, 1484 (1977)CrossRefGoogle Scholar
  12. 12.
    J. P. Pouget, G. Shirane, J. M. Hastings, A. J. Heeger, N. D. Miro and A. G. MacDiarmid, Phys. Rev. (in press)Google Scholar
  13. 13.
    I. V. Heilmann, J. M. Hastings, G. Shirane, A. J. Heeger, and A. G. MacDiarmid, Phys. Rev. Lett. (Submitted)Google Scholar
  14. 14.
    D. P. Chakraborty, R. Spal, C. K. Chiang, A. M. Denenstein, A. J. Heeger and A. G. MacDiarmid, Solid State Commun. (in press)Google Scholar
  15. 15.
    N. D. Miro, A. G. MacDiarmid, A. J. Heeger, A. F. Garito, C. K. Chiang, A. J. Schultz and J. M. Williams, J. Inorg. and Nucl. Chem. 40, 1351 (1978)CrossRefGoogle Scholar
  16. 16.
    N. Menyhard and J. Solyom, J. Low Temp. Phys. 12, 529 (1973)CrossRefGoogle Scholar
  17. 17.
    A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974)CrossRefGoogle Scholar
  18. 18.
    H. Fukuyama, T. M. Rice, C. M. Varma and B. F. Halperin, Phys. Rev. B 10, 3775 (1974); P. A. Lee, T. M. Rice and R. Klemm, Phys. Rev. B (in press)CrossRefGoogle Scholar
  19. 19.
    D. Mattis, Phys. Rev. Lett. 32, 714 (1974)CrossRefGoogle Scholar
  20. 20.
    G. A. Kharadze, G. E. Gurgenishvilli, and A. A. Nerseyan, (preprint)Google Scholar
  21. 21.
    R. A. Craven, G. A. Thomas, and R. D. Parks, Phys. Rev. B 7, 157 (1973)CrossRefGoogle Scholar
  22. 22.
    J. S. Langer and V. Ambergaokar, Phys. Rev. 164, 498 (1967)CrossRefGoogle Scholar
  23. 23.
    D. E. McCumber and B. I. Halperin, Phys. Rev. B l, 1054 (1970)CrossRefGoogle Scholar
  24. 24.
    Introduction to Superconductivity, Michael Tinkham (McGraw-Hill, New York 1975); Chapter 8Google Scholar
  25. 25.
    R. Spal, A. Denenstein, C. K. Chiang, A. J. Heeger, and A. G. MacDiarmid, Bull. Amer. Phys. Soc. 23, 305 (1978); and to be publishedGoogle Scholar
  26. 26.
    W. R. Datars, A. van Schyndel, J. S. Lass, D. Chartier and R. J. Gillespie, Phys. Rev. Letters 40, 1184 (1978)CrossRefGoogle Scholar
  27. 27.
    A. R. McGhie, private communicationGoogle Scholar
  28. 28.
    W. R. Salaneck, R. Spal, A. J. Heeger and A. G. MacDiarmid, (to be published)Google Scholar
  29. 29.
    D. P. Seraphim, F. M. D'Heurle and W. R. Heller, “Free Energy of Composite Wires in the Superconducting State”, Rev. Modern Phys., Jan. 1964, p. 323–327Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • R. Spal
    • 1
  • D. P. Chakraborty
    • 1
  • C. K. Chiang
    • 1
  • A. Denenstein
    • 1
  • A. J. Heeger
    • 1
  • A. G. MacDiarmid
    • 1
  1. 1.Laboratory for Research on the Structure of MatterUniversity of PennsylvaniaPhiladelphia

Personalised recommendations