Remarks to homogeneous solutions of Einstein's field equations

  • István Ozsváth
Alfred Schild Memorial Session on Group Theory in General Relativity
Part of the Lecture Notes in Physics book series (LNP, volume 94)


Homogeneous Space Weyl Tensor Invariant Vector Field Vacuum Field Equation Proper Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Ozsváth and E. L. Schücking, An Anti Mach Metric, Recent Developments in Relativity,Pergamon Press (1962).Google Scholar
  2. [2]
    I. Ozsváth, Losungen der Einsteinschen Feldgleichungen mit Einfach Transitiver Bewegungsgruppe, Abhandlungen der Akademie in Mainz (1962).Google Scholar
  3. [3]
    A. Z. Petrov, Recent Developments in General Relativity, Pergamon Press (1962), p. 379.Google Scholar
  4. [4]
    M. Cohen, R. Debever and L. Defrise, A Complex Vectorial Formalism in General Relativity, J. of Math and Mech., 16, (1967), p. 761.Google Scholar
  5. [5]
    R. E. Hiromoto and I. Ozsváth General Relativity and Gravitation, 9, (1978), p. 299.Google Scholar
  6. [6]
    I. Ozsváth and E. L. Schücking, Nature, 193, (1962), p. 1168.Google Scholar
  7. [7]
    I. Ozsváth and E. L. Schücking, The Finite Rotating Universe, Annals of Physics, 55, (1969), p. 166.Google Scholar
  8. [8]
    I. Ozsváth, New Homogeneous Solutions of Einstein's field Equations with Incoherent Matter, J. Math Phys., 6, (1965), p. 590.Google Scholar
  9. [9]
    D. L. Farnsworth and R. P. Kerr, Homogeneous Dust Filled Cosmological Solutions, J. Math Phys. 7, (1966), p. 1625.Google Scholar
  10. [10]
    W. de Sitter, On the Relativity of Inertia Proc. Kon. Ned. Akad. Wet. 19, (1917), p. 1217.Google Scholar
  11. [10a]
    W. de Sitter, On the Curvature of Space Proc. Kon. Ned. Adad. Wet. 20, (1917), p. 229.Google Scholar
  12. [11]
    B. Bertotti, Uniform Electromagnetic Field in the Theory of General Relativity Phys. Rev. 116, (1959), 1331.Google Scholar
  13. [12]
    M. Cahen, On a Class of Homogeneous Spaces in General Relativity, Bull Acad. Roy. Belgique, 50, (1964), p. 972.Google Scholar
  14. [13]
    I. Ozsváth, All Homogeneous Solution of Einstein's Vacuum Field Equations with a Non Vanising Cosmological Term (to be published).Google Scholar
  15. [14]
    M. P. Ryan and L. C. Shepley, Homogeneous Relativistic Cosmologies, Princeton University Press, Princeton, N.J. (1975).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • István Ozsváth
    • 1
  1. 1.The University of Texas at DallasUSA

Personalised recommendations