Surface deformations, their square root and the signature of spacetime

  • Claudio Teitelboim
Alfred Schild Memorial Session on Group Theory in General Relativity
Part of the Lecture Notes in Physics book series (LNP, volume 94)


The formulation of general relativity in terms of surface deformations and its extension to supergravity are briefly reviewed. The role of the spacetime signature e is discussed. It is pointed out that ε may be used as a perturbation parameter. The “free” theory corresponds to ε = 0, which is halfway between hyperbolic (ε = −1) and Euclidean (ε = +1) spacetime.


Structure Constant Surface Deformation Supersymmetry Generator Path Independence Signature Zero 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Teitelboim, in Einstein Centenary Volume (A. Held, ed., GRG Journal, in press).Google Scholar
  2. [2]
    J.A. Wheeler, in Battelle Rencontres 1967 (C.M. DeWitt and J.A. Wheeler, eds., Benjamin, New York, 1968); also in Analytical Methods in Mathematical Physics (R.P. Gilbert and R. Newton, eds., Gordon and Breach, New York, 1970).Google Scholar
  3. [3]
    C. Teitelboim, Ph.D. Thesis, Princeton University, 1973, unpublished. Ann. Phys. (N.Y.) 79, 542 (1973); S. Hojman, K. Kuchar and C. Teitelboim, Nature, Phys. Sci. 245, 97 (1973); Ann. Phys. (N.Y.) 96, 88 (1976).Google Scholar
  4. [4]
    P.A.M. Dirac, Can. J. Math. 2, 129 (1950); 3, 1 (1951); Lectures on Quantum Mechanics (Academic, N.Y., 1964).Google Scholar
  5. [5]
    P.A.M. Dirac, Proc. Roy. Soc. (London) A246, 326 (1958); R. Arnowitt, S. Deser and C.W. Misner, in Gravitation, an Introduction to Current Research (L. Witten, ed., Wiley, New York, 1962).Google Scholar
  6. [6]
    P.A.M. Dirac, Phys. Rev. 73, 1092 (1948); J. Schwinger, Phys. Rev. 127, 324 (1962); J. Katz, C. R. Acad. Sci. (France) 254, 1386 (1962).Google Scholar
  7. [7]
    C. Teitelboim, Phys. Rev. Lett. 38, 1106 (1977).Google Scholar
  8. [8]
    R. Tabensky and C. Teitelboim, Phys. Lett. 69B, 453 (1977).Google Scholar
  9. [9]
    S. Ferrara, D.Z. Freedman and P. van Nieuwenhuizen, Phys. Rev. D13, 3214 (1976); S. Deser and B. Zumino, Phys. Lett. 62B, 335 (1976).Google Scholar
  10. [10]
    J.R. Klauder, Phys. Rev. D2, 272 (1970).Google Scholar
  11. [11]
    B.S. DeWitt, Phys. Rev. 160, 1113 (1967).Google Scholar
  12. [12]
    A. Barducci, R. Casalbuoni and L. Lusanna, Nuovo Cimento 35A, 377 (1976); F.A. Berezin and M.S. Marinov, Ann. Phys. (N.Y.)104, 336 (1977). See also C. Teitelboim in Current Trends in the Theory of Fields (Proceedings of a conference held in Tallahassee, Florida in April 1977 on the 50th anniversary of the Dirac equation) and references therein.Google Scholar
  13. [13]
    C.J. Isham, Proc. Roy. Soc. (London) A351, 209 (1976).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Claudio Teitelboim
    • 1
  1. 1.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations