Torsion and quantum gravity

  • Andrew J. Hanson
  • Tullio Regge
Alfred Schild Memorial Session on Group Theory in General Relativity
Part of the Lecture Notes in Physics book series (LNP, volume 94)


We suggest that the absence of torsion in conventional gravity could in fact be dynamical. A gravitational Meissner effect might produce instanton-like vortices of nonzero torsion concentrated at four-dimensional points; such torsion vortices would be the gravitational analogs of magnetic flux vortices in a type II superconductor. Ordinary torsion-free spacetime would correspond to the field-free superconducting region of a superconductor; a dense phase of “torsion foam” with vanishing metric but well-defined affine connection might be the analog of a normal conductor.


Principal Bundle Topological Invariant Instanton Solution Flat Connection Gravitational Instanton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Belavin, A. M. Polyakov, A. S. Schwarzand Yu. S. Tyupkin, Phys. Lett. 59B (1975) 85Google Scholar
  2. 2.
    G. 't Hooft, Phys. Rev. Lett. 37 (1976) 8; Phys. Rev. D14 (1976) 3432.Google Scholar
  3. 3.
    R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37 (1976) 172; C. Callan, R. Dashen and D. Gross, Phys. Lett. (1976) 334.Google Scholar
  4. 4.
    T. Eguchi and A. J. Hanson, Phys. Lett. 74B (1978) 249; T. Eguchi and A. J. Hanson, submitted to Ann. Phys. (N. Y.).Google Scholar
  5. 5.
    S. W. Hawking and C. N. Pope, “Symmetry Breaking by Instantons in Supergravity” (DAMTP preprint); A. J. Hanson and H. Römer, “Gravitational Instanton Contribution to Spin 3/2 Axial Anomaly” (CERN, TH 2564).Google Scholar
  6. 6.
    V. A. Belinskii, G. W. Gibbons, D. N. Page and C. N. Pope, Phys. Lett. 76B (1978) 433.Google Scholar
  7. 7.
    G. W. Gibbons and S. W. Hawking, in preparation (private communication from S. W. Hawking).Google Scholar
  8. 8.
    N. Hitchin, private communication.Google Scholar
  9. 9.
    S. S. Chern, Ann. Math. 46 (1945) 674; see also T. Eguchi, P. B. Gilkey and A. J. Hanson, Phys. Rev. D17 (1978) 423.Google Scholar
  10. 10.
    See S. W. Hawking, “Spacetime Foam” (DAMTP preprint) for a similar proposal in the more restrictive context of Einstein's theory of gravity.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Andrew J. Hanson
    • 1
  • Tullio Regge
    • 2
    • 3
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Istituto di FisicaUniversita di TorinoTorinoItaly
  3. 3.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations