Self-dual Gauge fields and space-times

  • Joshua V. Goldberg
Alfred Schild Memorial Session on Group Theory in General Relativity
Part of the Lecture Notes in Physics book series (LNP, volume 94)


Line Bundle Minkowski Space Gauge Field Twistor Space Affine Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Penrose and M. A. H. MacCallum, Physics Reports 6C, 272 (1973).Google Scholar
  2. 2.
    R. Penrose, “Twistor Theory, Its Aims and Achievements”, Quantum Gravity (eds. C. J. I. Shaw, R. Penrose, and U. W. Sciama, Oxford University Press, Oxford, 1975).Google Scholar
  3. 3.
    R. S. Ward, Phys. Lett. 61A, 81 (1977).Google Scholar
  4. 4.
    E. T. Newman, “The Bondi-Metzner-Sachs Group: Its Complexification and Some Related Curious Consequences”, General Relativity and Gravitation, (eds. J. Rosen and G. Shaviv, John Wiley and Sons, New York, 1975).Google Scholar
  5. 5.
    M. Ko, E. T. Newman, and K. P. Tod, “H-Space-A New Approach”, Asymptotic Structure of Space-Time (eds. F. P. Esposito and L. Witten, Plenum Press, New York, 1977).Google Scholar
  6. 6.
    J. F. Plebanski, J. Math. Phys. 16, 2395 (1975).Google Scholar
  7. 7.
    R. Penrose, GRG 7, 31 (1976).Google Scholar
  8. 8.
    M. Ko, M. Ludvigsen, E. T. Newman, and K. P. Tod, “The Theory of H-Space”, preprint (1977).Google Scholar
  9. 9.
    E. T. Newman, “On Source-Free Yang-Mills Theories, preprint (1978).Google Scholar
  10. 10.
    E. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).Google Scholar
  11. 11.
    J. N. Goldberg, et. al., J. Math. Phys. 8, 2155 (1967).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Joshua V. Goldberg
    • 1
  1. 1.Syracuse UniversitySyracuse

Personalised recommendations