The effect of the choice of wave functions on theoretical predictions for symmetry breaking processes: A view from the DKP formalism

  • Michael Martin Nieto
Spectrum Generating Groups
Part of the Lecture Notes in Physics book series (LNP, volume 94)


When considering an elementary particle matrix element, of necessity one must make an assumption, which often goes unnoticed, as to what formalism should be used for the wave functions. A current or interaction Lagrangian-density matrix-element is of the form \(V = \bar \psi _{out} \Gamma \psi _{in}\) , where ψin and \(\bar \psi _{out}\) represent the physical ingoing and outgoing particles, and r represents the vertex function. A current must have the dimensions of (length)-3 = (mass)3 in units of ▄ = c = 1 ψin and \(\bar \psi _{out}\) must be described in terms of the physical on-shell masses or else one has no phase space. It is only the vertex function which can be symmetric in the internal symmetry under consideration.

The decision as to how much of the matrix element will be taken to be symmetric and how much of the matrix element will be taken to be associated with on-mass-shell wave functions is a fundamental assumption. Depending on how the assumption is made, different results will be predicted.

Normally first-order Dirac wave functions, with dimensions (length)−3/2 and secondorder Klein-Gordon wave functions with dimensions (length)−1 are considered for spin 1/2 fermions and spin-0 bosons, respectively. We will discuss the types of new results which are obtained if, on the contrary, one chooses to consider bosons in the first-order Duffin-Kemmer-Petiau formalism. We will argue that the DKP formalism represents a complementary viewpoint to the spectrum generating approach. Both challenge the standard phenomenology: DKP by changing the wave function, spectrum generating by changing the vertex function.


Wave Function Symmetry Breaking Vertex Function Symmetry Limit Spectrum Generate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fischbach, F. Iachello, A. Lande, M. M. Nieto, and C. K. Scott, Phys. Rev. Lett. 26, 1200 (1971).Google Scholar
  2. 2.
    E. Fischbach, M. M. Nieto, H. Primakoff, C. K. Scott, and J. Smith, Phys. Rev. Lett. 27, 1403 (1971).Google Scholar
  3. 3.
    E. Fischbach, M. M. Nieto, and C. K. Scott, Prog. Theor. Phys. (Kyoto) 48, 574 (1972).Google Scholar
  4. 4.
    E. Fischbach, M. M. Nieto, H. Primakoff, and C. K. Scott, Phys. Rev. Lett. 29, 1046 (1972).Google Scholar
  5. 5.
    F. T. Meiere, E. Fischbach, A. McDonald, M. M. Nieto, and C. K. Scott, Phys. Rev. D 8, 4209 (1973).Google Scholar
  6. 6.
    E. Fischbach, J. D. Louck, M. M. Nieto, and C. K. Scott, J. Math. Phys. 15, 60 (1974).Google Scholar
  7. 7.
    B. G. Kenny, D. C. Peaslee, and M. M. Nieto, Phys. Rev. D 13, 757 (1976).Google Scholar
  8. 8.
    R. J. Duffin, Phys. Rev. 54, 1114 (1938).Google Scholar
  9. 9.
    N. Kemmer, Proc. R. Soc. A 173, 91 (1939).Google Scholar
  10. 10.
    G. Petiau, Acad. R. Belg. C. Sci. Mem. Collect 8 16, No. 2 (1936).Google Scholar
  11. 11.
    O. Klein, Z. Phys. 37, 895 (1926)Google Scholar
  12. 11a.
    V. Fock, Z. Phys. 38, 242 (1926); 39, 226 (1926)Google Scholar
  13. 11b.
    E. Schrödinger, Ann. Phys. (Leipz.) 81, 109 (1926)Google Scholar
  14. 11c.
    J. Kudar, Phys. Zeit. 27, 724 (1926)Google Scholar
  15. 11d.
    W. Gordon, Z. Phys. 40, 117 (1926)Google Scholar
  16. 11e.
    Th. de Donder, Compt. Rend. 182, 1380 (1926)Google Scholar
  17. 11f.
    Th. de Donder and Fr. H. van den Dungen, ibid. 183, 22 (1926).Google Scholar
  18. 12.
    R. A. Krajcik and M. M. Nieto, Am. J. Phys. 45, 818 (1977).Google Scholar
  19. 13.
    A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 43, 277 (1971).Google Scholar
  20. 14.
    R. A. Krajcik and M. M. Nieto, Phys. Rev. D 15, 455 (1977). This is the seventh paper of a series on Bhabha first-order wave équations, giving a summary and conclusions.Google Scholar
  21. 15.
    V. L. Ginzburg and V. I. Man'ko, Fiz. Elem. Chastits At. Yadra 7, 3 (1976). [English trans. in Sov. J. Part. Nucl. _7, 1 (1976).]Google Scholar
  22. 16.
    A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Interscience, New York, 1965), Chap. IX.Google Scholar
  23. 17.
    See the discussion on p. 194 of R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).Google Scholar
  24. 18.
    K. Macrae, Phys. Rev. D (to be published).Google Scholar
  25. 19.
    E. Golowich and V. Kapila, Phys. Rev. D 8, 2180 (1973).Google Scholar
  26. 20.
    L. M. Chounet, J. M. Gaillard, and M. K. Gaillard, Phys. Reports 4C, 199 (1972).Google Scholar
  27. 21.
    G. Donaldson, et al., Phys. Rev. D 9, 2960 (1974).Google Scholar
  28. 22.
    J. Sandweiss, J. Sunderland, W. Turner, W. Willis, and L. Keller, Phys. Rev. Lett. 30, 1002 (1973).Google Scholar
  29. 23.
    A. Böhm, Phys. Rev. D 13, 2110 (1976).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Michael Martin Nieto
    • 1
  1. 1.Theoretical Division, onLos Alamos Scientific LaboratoryLos AlamosUSA

Personalised recommendations