Deformation of symplectic structure and quantization

  • François Bayen
Symplectic Structure and Geometric Quantization
Part of the Lecture Notes in Physics book series (LNP, volume 94)


Phase Space Poisson Bracket Cotangent Bundle Star Product Product Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. BAYEN, M. FLATO, C. FRONSDAL, A. LICHNEROWICZ and D. STERNHEIMER: Deformation theory and quantization. Ann.Phys. (N.Y.) 111 (1978) 61–151. Cf. also Lett. Math. Phys. 1 (1977), 521.Google Scholar
  2. 2.
    C. FRONSDAL: Some ideas about quantization. UCLA/77/TEP/18. (Preprint October 1977) To be published in Reports of Math. Phys.Google Scholar
  3. 3.
    A. LICHNEROWICZ: Construction of twisted products for cotangent bundles of classical groups and Stiefel manifolds. Lett. Math. Phys. 2 (1977), 133.Google Scholar
  4. 4.
    O. ARNAL and J.C. CORTET: Geometrical theory of contractions of groups and representations. Dijon 805 (prepring May 1978). To be published in J.Math. Phys.Google Scholar
  5. 5.
    M. GERSTENHABER: Ann. Math. 79 (1964), 59.Google Scholar
  6. 6.
    H. WEYL: The theory of groups and quantum mechanics, Dover, New York, 1931.Google Scholar
  7. 7.
    E.P. WIGNER: Phys. Rev. 40 (1932), 749.Google Scholar
  8. 8.
    J.E. MOYAL: Proc. Cambridge Phil. Soc. 45 (1949), 99.Google Scholar
  9. 9.
    E.S. AGARWAL and E. WOLF: Phys. Rev. D2, 2161 (1970)Google Scholar
  10. 10.
    K.C. LIU: J. Math. Phys. 17, 859 (1976).Google Scholar
  11. 11.
    A. VOROS: Developpements semi-classiques (thèse Université de Paris-Sud,no1843, may 1977).Google Scholar
  12. 12.
    D. BABBITT: “Hilbert spaces of analytic functions” in Studies in Mathematical Physics, Princeton University Press, Princeton 1976.Google Scholar
  13. 13.
    I. DAUBECHIES: An application of hyperdifferential operators to holomorphic quantization (1978) to be published in Lett. Math.Phys.Google Scholar
  14. 14.
    G.H. HARDY: Proceedings of-the Cambridge Philosophical Society 36, (1940), 1.Google Scholar
  15. 15.
    E.D. RAINVILLE, Special functions, Chealsea publishing co. (1960).Google Scholar
  16. 16.
    M. FLATO, A. LICHNEROWICZ and D. STERNHEIMER: J. Math. Phys. 17 (1976) 1754.Google Scholar
  17. 17.
    P.A.M. DIRAC: Lectures on Quantum Mechanics, Belfer Graduate School.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • François Bayen
    • 1
  1. 1.Département de MathématiquesUniversité de Paris 6Cedex 05Paris

Personalised recommendations