• David Campbell
Gauge Groups and Solitons
Part of the Lecture Notes in Physics book series (LNP, volume 94)


Solitary Wave Soliton Solution Inverse Scattering Solitary Wave Solution Soliton Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240–243 (1965).Google Scholar
  2. 2.
    The best general introduction to solitons remains the classic review by A. C. Scott; F. Y. F. Chu, and D. W. McLaughlin, in Proc. IEEE, 61 1443–1483 (1973).Google Scholar
  3. 3.
    D. J. Korteweg and G. de Vries, Phil. Mag. 39, 422–443, (1895).Google Scholar
  4. 4.
    V. I. Talanov, Zh. Eksp. Teor. Fiz. Pis. Red. 2, 218–222 (1965); trans JETP Lett. 2, 138–141 (1965); P. L. Kelley, Phys. Rev. Lett. 15, 1005–1008 (1965).Google Scholar
  5. 5.
    V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118–134 (1971); trans. Soviet Physics JETP 34, 62–69 (1972).Google Scholar
  6. 6.
    For a good review see R. Rajaraman, Phys. Lett. 21C, 229–313 (1975).Google Scholar
  7. 7.
    C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett. 19 1095–97 (1967).Google Scholar
  8. 8.
    M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. In App. Math. 53 249–315 (1974).Google Scholar
  9. 9.
    E. Fermi, J. Pasta, and S. Ulam, “Studies of Nonlinear Problems. I”, Los Alamos Scientific Laboratory Report, LA-1940 (1955).Google Scholar
  10. 10.
    A notable exception to this rule is the sine-Gordon equation, where the analytic two soliton solution was found prior to the numerical experiments which showed the soliton nature of the solution in (6.b). Compare A. Seeger, M. Donth, and A. Kochendörfer, Z. Phys. 134, 173–193 (1953) to J. K. Perring and T. H. R. Skyrme, Nuc. Phys. 31, 550–555 (1962).Google Scholar
  11. 11.
    For a recent review of the status of this “experimental mathematics,” see V. G. Makhankov, Phys. Lett. 35C, 1–128 (197 ).Google Scholar
  12. 12.
    P. Lax, Comm. Pure and App. Math., 21, 467–490 (1968).Google Scholar
  13. 13.
    J. Corones and D. McLaughlin, Phys. Rev. A10, 2051–2062 (1974).Google Scholar
  14. 14.
    H. Wahlquist and F. Estabrook, J. Math. Phys. 16, 1–7 (1975).Google Scholar
  15. 15.
    G. Lamb, Phys. Rev. Lett. 37, 235–237 (1976).Google Scholar
  16. 16.
    J. Corones, B. Markovsky, and V. Rizov, J. Math. Phys. 18, 2207–2213 (1977).Google Scholar
  17. 17.
    F. Lund and T. Regge, Phys. Rev. D 14, 1524–1535 (1976); F. Lund,Phys. Rev. Lett. 38, 1175–1178 (1977).Google Scholar
  18. 18.
    More precisely, we shall consider only the time independence of the point spectrum of L; for the continuum, it is easiest to work directly with R(λ).Google Scholar
  19. 19.
    Studying the asymptotic behavior as × →-∞ is equally simple but yields no new information; see ref. (2).Google Scholar
  20. 20.
    I. M. Gelfand and B. M. Levitan, Izvest. Akad. Nauk. SSSR Ser. Mat. 15 309–360 (1951) [Am. Math. Soc. Trams. 1, 253–304 (1953)].Google Scholar
  21. 21.
    V. A. Marchenko, Dokl. Akad. Nauk. SSR 72, 457–460 (1950); 104, 695–698 (1955); Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering Theory (Gordon and Breach, New York, 1963).Google Scholar
  22. 22.
    V. Bargman, Rev. Mod. Phys. 21, 488–493 (1949); R. Jost and W. Kahn; Det. Kgl. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 27, No. 9 (1953).Google Scholar
  23. 23.
    See, for example, P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II, pp. 1649–1659 (McGraw-Hill, New York, 1953).Google Scholar
  24. 24.
    The absence of a factor of “i” here is purely conventional and is for notational convenience only.Google Scholar
  25. 25.
    R. Hermann, Phys. Rev. Lett. 36, 835–836 (1976).Google Scholar
  26. 26.
    J. Corones, J. Math. Phys. 18, 163–164 (1977).Google Scholar
  27. 27.
    M. Crampin, F. Pirani, P. Robinson, Lett. Math. Phys. 2, 15–19 (1977).Google Scholar
  28. 28.
    M. Crampin, Phys. Lett. 66A, 170–172 (1978).Google Scholar
  29. 29.
    J. Corones, “An Illustration of the Lie Group Framework for Soliton Equations: Generalizations of the Lund-Regge Model”, J. Math. Phys., to appear.Google Scholar
  30. 30.
    Bäcklund Transformations, The Inverse Scattering Method, Solitons, and Their Applications, Robert M. Miura, ed., Lecture Notes in Mathematics 515, A. Dold and B. Eckmann, eds. (Springer Verlag, Berlin, 1976).Google Scholar
  31. 31.
    M. Wadati, H. Sanuki, K. Konno, Prog. Theor. Phys. 53, 419–436 (1975).Google Scholar
  32. 32.
    See, for example, R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10, 4114–4129, 4130-4138 (1975); J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486–1498 (1975); A. Neveu and J. Gervais, eds, Phys. Lett. 23C, 237–374 (1976).Google Scholar
  33. 33.
    R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 11, 3424–3450 (1975).Google Scholar
  34. 34.
    A. Luther, Phys. Rev. B. 14, 2153–2159 (1976).Google Scholar
  35. 35.
    V. Zakharov and L. Faddeev, Funkt. Anal. i Ego. Pril. 5, 18–27 (1971); (Transl.) Funkt. Anal. and its Applic. 5, 280–287 (1972).Google Scholar
  36. 36.
    For a pedagogical presentation, see the article by H. Flaschka and D. McLaughlin, in ref. [30].Google Scholar
  37. 37.
    V. Zakharov, Zh. Eksp. Teor. Fiz. 65, 219–225 (1973); (Transl.) Sov. Phys. JETP 38, 108–110 (1974).Google Scholar
  38. 38.
    F. Tappert, private communication see also J. C. Goldstein, Los Alamos Informal Report, LA 6833-MS (1977).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • David Campbell
    • 1
  1. 1.Theoretical Division, Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosNew Mexico

Personalised recommendations