Advertisement

Application of the boson polynomials of U(n) to physical problems

  • J. D. Louck
Unitary Group, Atomic, Molecular and Solid-State Physics
Part of the Lecture Notes in Physics book series (LNP, volume 94)

Keywords

Basis Vector Boson Operator Standard Tableau Tensor Product Space Orthogonal Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Jordan, Z. Physik 94 (1935), 531–535.Google Scholar
  2. 2.
    J. Schwinger, “On Angular Momentum,“ [Reprinted in “Quantum Theory of Angular Momemtum,” ed. by L. C. Biedenharn and H. van Dam, Academic Press, New York, 1965, 229–279.]Google Scholar
  3. 3.
    H. Weyl, “The Theory of Groups and Quantum Mechanics,“ translated by H. P. Robertson, Methuen, London, 1931; reissued Dover, New York, 1949.Google Scholar
  4. 4.
    G. Racah, Phys. Rev. 76 (1949), 1352–1365.Google Scholar
  5. 5.
    G. Racah, Group theory and spectroscopy, Engeb. Exakt. Naturw. 37 (1965), 28–84.Google Scholar
  6. 6.
    M. Hamermesh, “Group Theory and its Applications to Physical Problems,” Addison-Wesley Publ. Co., Reading, Massachusetts, 1962.Google Scholar
  7. 7.
    B. R. Judd, “Operator Techniques in Atomic Spectroscopy,” McGraw-Hill Book Co., New York, 1963.Google Scholar
  8. 8.
    M. Moshinsky, J. Math. Phys. 4 (1963), 1128–1139.Google Scholar
  9. 9.
    G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4 (1963), 1449–1466.Google Scholar
  10. 10.
    J. D. Louck, J. Math. Phys. 6 (1965), 1786–1804.Google Scholar
  11. 11.
    M. Moshinsky, J. Math. Phys. 7 (1966), 691–698.Google Scholar
  12. 12.
    L. C. Biedenharn and J. D. Louck, Commun. Math. Phys. 8 (1968), 80–131.Google Scholar
  13. 13.
    P. Kramer and M. Moshinsky, Group theory of harmonic oscillators and nuclear structure, in “Group Theory and its Applications,” ed. by E. M. Loebl, Academic Press, New York, 1968, 339–468.Google Scholar
  14. 14.
    W. A. Goddard, Phy. Rev. 157 (1967), 73–80; ibid, 81-93.Google Scholar
  15. 15.
    P. Kramer, Z. Phys. 216 (1968), 68.Google Scholar
  16. 16.
    J. D. Louck, Am. J. Phys. 38 (1970), 3–42.Google Scholar
  17. 17.
    W. J. Holman, Nuovo Cimento 4A (1971), 904–931.Google Scholar
  18. 18.
    E. Chacón, M. Ciftan, and L. C. Biedenharn, J. Math. Phys. 13 (1972), 577–589.Google Scholar
  19. 19.
    T. H. Seligman, J. Math. Phys. 13 (1972), 876–879.Google Scholar
  20. 20.
    J. D. Louck and L. C. Biedenharn, J. Math. Phys. 14 (1973), 1336–1357.Google Scholar
  21. 21.
    P. Doubilet, G.-C. Rota, and J. Stein, Studies in Appl. Math., Vol. LIII, No. 3, 1974, 185–216.Google Scholar
  22. 22.
    T. H. Seligman, “Double Coset Decompositions of Finite Groups and the Many Body Problem,” Burg Verlag, Basel, 1975.Google Scholar
  23. 23.
    W. G. Harter and C. W. Patterson, “A Unitary Calculus for Electronic Orbitals,” Springer-Verlag, Berlin, 1976.Google Scholar
  24. 24.
    C. W. Patterson and W. G. Harter, J. Math. Phys. 17 (1976), 1125–1136; 17, 1137–1142.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. D. Louck
    • 1
  1. 1.Theoretical DivisionLos Alamos Scientific LaboratoryLos Alamos

Personalised recommendations