A general theory for the evaluation of X-ray diagrams of biomembranes and other lamellar systems

  • Wolfram Welte
  • Werner Kreutz
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 30)


In the following contribution the development of a new evaluation theory for X-ray diffraction diagrams of biomembranes and other lamellar systems is presented. This theory is more comprehensive than other theories applied hitherto, since statistical lattice distortions, distortions of the lattice-cell, membrane undulations and different interspatial electron densities as well as “Lorentz” correction are considered.


Convolution Product Plane Membrane Phase Combination Layer Profile Lamellar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. 1.
    Zernicke, F., Prins, J. A.: Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung. Z. f. Physik 41, 184 (1927)CrossRefGoogle Scholar
  2. 2.
    Kratky, O.: Die Struktur des flüssigen Quecksilbers. Physikal. Zeitschr. 34, 482 (1933)Google Scholar
  3. 3.
    Levine, Y. K., Wilkins, M. H. F.: Structure of oriented Lipid Bilayers. Nature 230, 69 (1971)CrossRefGoogle Scholar
  4. 4.
    Engelmann, D. M.: Lipid bilayer Structure in the Membrane of Mycoplasma laidlawii. J. Mol. Biol. 58, 153 (1971)CrossRefGoogle Scholar
  5. 5.
    Blaurock, A. E.: X-Ray Diffraction Pattern from a Bilayer with Protein outside. Biophysical J. 13, 281 (1973)Google Scholar
  6. 6.
    Blaurock, A. E.: The Structure of a Lipid-Cyt. C Membrane. Biophysical J. 13, 290 (1973)Google Scholar
  7. 7.
    Lee, R. E., Worthington, C. R., Glew, R. H.: The Bilayer Nature of Deposits Occurring in Gaucher's Disease. Arch. of Biochem. & Biophys. 159, 259 (1973)CrossRefGoogle Scholar
  8. 8.
    Franks, N. P.: Structural Analysis of Hydrated Egg-Lecithin and Cholesterol Bilayers. I. X-Ray Diffraction. J. Mol. Biol. 100, 345 (1976)CrossRefGoogle Scholar
  9. 9.
    Worcester, D. L., Franks, N. P.: Structural Analysis of Hydrated Egg Lecithin and Cholesterol Bilayers. II. Neutron Diffraction. J. Mol. Biol. 359, 100 (1976)Google Scholar
  10. 10.
    Podo, F., Cain, J. E., Blasie, J. K.: Structural and Dynamical Studies of Mixed Chlorophyll/Phosphatidylcholine Bilayers via X-Ray Diffraction, Absorption Polarization Spectroscopy and Nuclear Magnetic Resonance. BBA 419, 19 (1976)Google Scholar
  11. 11.
    Khare, R. S., Worthington, C. R.: An X-Ray Diffraction Study of Sphingomyelin-Cholesterol Interaction in Oriented Bilayers. Mol. Cryst. Liq. Cryst. 38, 195 (1977)CrossRefGoogle Scholar
  12. 12.
    Casper, D. L. D., Kirschner, D. A.: Myelin Membrane Structure at 10 Å Resolution. Nature 231, 46 (1971)CrossRefGoogle Scholar
  13. 13.
    McIntosh, Worthington, C. R.: Direct Determination of the Lamellar Structure of Peripheral Nerve Structure at low Resolution (17 Å). Biophysical J. 14, 363 (1974)Google Scholar
  14. 14.
    Worthington, C. R., McIntosh, T. J.: Direct Determination of the Lamellar Structure of Peripheral Nerve Myelin at moderate Resolution. Biophysical J. 14, 703 (1974)Google Scholar
  15. 15.
    Blaurock, A. E., Wilkins, M. H. F.: Structure of Frog-Photoreceptor Membranes. Nature 223, 906 (1969)CrossRefGoogle Scholar
  16. 16.
    Chabre, M.: X-Ray Diffraction Studies of Retinal Rods. I. Structure of the Disc Membrane, Effect of Illumination. II. Light Effect on the Osmotic Properties. BBA 382, 322 (1975)Google Scholar
  17. 17.
    Makowski, L., Caspar, D. L. D., Phillips, W. C., Goodenough, D. A.: Gap Junction Structures. II. Analysis of the X-Ray Diffraction Data. The J. of Cell Biol. 74, 629 (1977)CrossRefGoogle Scholar
  18. 18.
    Blaurock, A. E., Stoeckenius, W., Oesterhelt, D., Scherphof, G. L.: Structure of the Cell Envelope of Halobacterium Halobium. The J. of Cell Biol. 71. 1 (1976)CrossRefGoogle Scholar
  19. 19.
    Blaurock, A. E., Wober, W.: Structure of the Wall of Halobacterium halobium Gas Vesicles. J. Mol. Biol. 106, 871 (1976)CrossRefGoogle Scholar
  20. 20.
    Blaurock, A. E., King, G. I.: Asymetric Structure of the Purple Membrane. Science 196, 1101 (1977)CrossRefGoogle Scholar
  21. 21.
    Sadler, D. M., Lefort-Tran, M., Pouphile, M.: Structure of Photosynthetic Membranes of Euglena using X-Ray Diffraction. BBA 298, 620 (1973)Google Scholar
  22. 22.
    Sayre, D.: Some Implications of a Theorem due to Shannon. Acta Cryst. 5, 843 (1952)CrossRefGoogle Scholar
  23. 23.
    Moody, M. F.: Structure Determination of Membranes in Swollen Lamellar Systems. Biophys. J. 14, 697 (1974)Google Scholar
  24. 24.
    Worthington, C. R., King, G. I., McIntosh, T. J.: Direct Structure Determination of Multilayered Membrane-Type Systems Which Contain Fluid Layers. Biophys. J. 13, 480 (1973)Google Scholar
  25. 25.
    Lesslauer, W., Cain, J., Blasie, J. K.: On the Location of 1-Anilino-8-Naphtalene-Sulfonate in Lipid Model Systems. An X-Ray Diffraction Study. BBA 241, 547 (1971)Google Scholar
  26. 26.
    Lesslauer, W.: X-Ray Diffraction from Fatty-Acid Multilayers. Significance of Intensity Data in Low-Angle Diffraction. Acta Cryst. B 30, 1927 (1974)Google Scholar
  27. 27.
    Lesslauer, W.: X-Ray Diffraction from Fatty-Acid Multilayers. Angular Width of Reflections from Systems with Few Unit Cells. Acta Cryst. B 30, 1932 (1974)Google Scholar
  28. 28.
    Mahler, P. H.: Direkte Bestimmung des Elektronendichteprofils von Cadmium-di-Stearat unter besonderer Berücksichtigung der Messfehlerempfindlichkeit des Auswerteverfahrens. Diplomarbeit, Institut für Biophysik & Strahlenbiol. der Universität Freiburg i. Br. (1977)Google Scholar
  29. 29.
    Blaurock, A. E., Stoeckenius, W.: Structure of the Purple Membrane. Nature 233, 153 (1971)Google Scholar
  30. 30.
    Porod, G.: Die Röntgenkleinwinkelstreuung von dicht gepackten kolloiden Systemen. Kolloid Zeitschrift 124, 83 (1951)CrossRefGoogle Scholar
  31. 31.
    Ewald, P. P.: X-Ray Diffraction by Finite and Imperfect Crystal Lattices. Proc. Phys. Soc. (London) 52, 167 (1940)CrossRefGoogle Scholar
  32. 32.
    Hosemann, R., Bagchi, S. N.: Direct analysis of diffraction by matter. Amsterdam: North-Holland Publishing Company, 1962. a) Chap. I; b) Chap. II § 1; c) Chap. IV § 2; d) Chap. VII § 9Google Scholar
  33. 33.
    Pape, E. H.: A New Deconvolution Method for Evaluating Electron Density Distributions from Small Angle Scattering Diagrams. Biophys. J. 14, 284–294 (1974)Google Scholar
  34. 34.
    Kreutz, W., Menke, W.: Strukturuntersuchungen an Plastiden. III. Z. f. Naturforschung 17 b, 675 (1962)Google Scholar
  35. 35.
    Kreutz, W.: Strukturuntersuchungen an Plastiden. VI. Z. f. Naturforschung 19 b, 441(1964)Google Scholar
  36. 36.
    Kreutz, W.: X-Ray Structure Research on the Photosynthetic Membrane, in: Advances in Botanical Research. R. D. Preston (ed.). London and New York: Academic Press, Vol. 3, p. 53–168 (1970)Google Scholar
  37. 37.
    Schwartz, S., Cain, J. E., Dratz, E. A., Blasie, J. K.: An Analysis of Lamellar X-Ray Diffraction from Disordered Membrane Multilayers with Application to Data from Retinal Rod outer Segments. Biophys. J. 15, 1201–1233 (1975)Google Scholar
  38. 38.
    Pape, E. H., Klott, K., Kreutz, W.: The Determination of the Electron Density Profile of the Human Erythrocyte Ghost Membrane by Small-Angle X-Ray Diffraction. Biophys. J. 19, 141–161 (1977)Google Scholar
  39. 39.
    Kreutz, W., Pape, E. H.: Evaluation of X-ray diffraction patterns of biomembrane systems, in: Summer institute on the physics of biological membranes. Colbow, K. (ed.). Vancouver, B. C., Canada: Simon Fraser University (1974)Google Scholar
  40. 40.
    Blaurock, A. E., Nelander, J. C.: Disorder in Nerve Myelin: Analysis of the Diffuse X-Ray Scattering. J. Mol. Biol. 103, 421 (1976)CrossRefGoogle Scholar
  41. 41.
    Nelander, J. C., Blaurock, A. E.: Disorder in Nerve Myelin: Phasing the Higher Order Reflexions by Means of the Diffuse Scatter. J. Mol. Biol. 118, 497 (1978)CrossRefGoogle Scholar
  42. 42.
    Bonart, R.: Parakristalline Schichtgitter in verstrickten Linearpolymeren. I. Die Querstruktur. Kolloid-Zeitschrift & Zeitschrift für Polymere 194, 97 (1964)CrossRefGoogle Scholar
  43. 43.
    Gbordzoe, M. K., Kreutz, W.: Direct X-Ray Determination of the Electron-Density Profile of the Nerve Myelin Membrane, with Paracrystalline Lattice Distortions Taken into Account. J. Appl. Cryst. 11, 489 (1978)CrossRefGoogle Scholar
  44. 44.
    Herbette, L., Marquardt, J., Scarpa, A., Blasie, J. K.: A Direct Analysis of Lamellar X-Ray Diffraction from Hydrated Oriented Multilayers of Fully Functional Sarcoplasmic Reticulum. Biophys. J. 20, 245 (1977)CrossRefGoogle Scholar
  45. 45.
    Cain, J. E.: Lattice and Substitution Disorder in Oriented Membrane Systems, Structure of the Chromatophore Membrane by X-Ray Diffraction. Federation Proceedings 33, 1241 (1974)Google Scholar
  46. 46.
    Blasie, J. K., Erecinska, M., Samuels, S., Leigh, J. S.: The Structure of a Cytochrome Oxidase-Lipid Model Membrane. BBA 501, 33 (1978)CrossRefGoogle Scholar
  47. 47.
    Hodapp, N., Kreutz, W.: To be publishedGoogle Scholar
  48. 48.
    Müller-Klieser, Kreutz, W.: On the Cross-Section Structure of the Mitochondrial Cristae-Membrane as Revealed by X-Ray Diffraction. Z. f. Naturforschung 31 c, 612 (1976)Google Scholar
  49. 49.
    Papoulis, A.: Systems and transforms with applications in optics. Toronto-New York: MacGraw-Hill Book Company 1968. a) Chap. II § 1; b) Chap. II § 3; c) Chap. II § 2; d) Chap. II § 2.Google Scholar
  50. 50.
    Papoulis, A.: Probability, random variables and stochastic processes. Toronto-New York: McGraw-Hill Book Company 1965, Chaps. III and IVGoogle Scholar
  51. 51.
    Deas, H. D.: The Diffraction of X-Rays by a Random Assemblage of Molecules Having Partial Alignment. Acta Cryst. 5, 542 (1952) a) Sec. 4CrossRefGoogle Scholar
  52. 52.
    Papoulis, A.: The fourier integral and its applications. Toronto, New York: McGraw-Hill Book Company 1962Google Scholar
  53. 53.
    Marquardt, D. W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal Soc. Indust. and Applied Mathematics 2, 431 (1963)CrossRefGoogle Scholar
  54. 54.
    Bevington, P. R.: Data reduction and error analysis for the physical sciences. Toronto, New York: McGraw-Hill Book Company 1969, Chap. 11Google Scholar
  55. 55.
    Blaurock, A. E.: Disorder is Characteristic of Nerve Myelin. BBA 510, 11 (1978)Google Scholar
  56. 56.
    Magnus, W., Oberhettinger, F., Soni, R. P.: Formulas and theorems for the special functions of mathematical physics. Berlin, Heidelberg, New York: Springer 1966, Chap. 9.2.3.Google Scholar
  57. 57.
    Bracewell, R.: The fourier Transform and its applications. Toronto, New York: McGraw-Hill Book Company 1965, Chap. 12Google Scholar
  58. 58.
    Marquardt, D. W., Baumeister, T., Sheldon, J. A., Stanley, R. M.: Least Squares Estimation of Nonlinear Parameters. Engineering Department E. I. du Pont de Nemours & Co., Inc. Wilmington, DelawareGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Wolfram Welte
    • 1
  • Werner Kreutz
    • 1
  1. 1.Institut für Biophysik und Strahlenbiologieder Universität Freiburg i. Br.FreiburgGermany

Personalised recommendations