Quelques nouveaux rÉsultats concernant des phÉnomÉnes de bifurcation en mÉcanique des fluides

  • T. B. Benjamin
Fondements des Methodes Numeriques en Mecanique des Fluides
Part of the Lecture Notes in Physics book series (LNP, volume 91)


Bifurcation Transcritique Viscous Fluid Motion Premiere Partie Mechanics Research Institute Produit Scalaire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Foias et R. Temam. Structure of the set of stationary solutions of the Navier-Stokes equations. Communs pure appl. Math. 30 (1977), 149–164.Google Scholar
  2. 2.
    A.J. Tromba et J.E. Marsden. Generic finiteness of the stationary solutions of the Navier-Stokes equations. (1977, a paraître.)Google Scholar
  3. 3.
    T.B. Benjamin. Applications of Leray-Schauder degree theory to problems of hydrodynamic stability. Math. Proc. Camb. Phil. Soc. 79 (1976), 373–392.Google Scholar
  4. 4.
    T.B. Benjamin. Bifurcation phenomena in steady flows of a viscous fluid. Part I. Theory. Proc. Roy. Soc. A (à paraître). [Fluid Mechanics Research Institute, Univ. of Essex, Rep. No. 83 (1977).Google Scholar
  5. 5.
    T.B. Benjamin. Bifurcation phenomena in steady flows of a viscous fluid. Part II. Experiments. Proc. Roy. Soc. Lond.A (à paraître).Google Scholar
  6. 6.
    O.A. Ladyzhenskaya. The Mathematical Theory of Viscous Fluid Motion. 2nd ed. (1969). New York: Gordon and Breach.Google Scholar
  7. 7.
    T.B. Benjamin. Applications of generic bifurcation theory in fluid mechanics. Proc. Internat. Symp. on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro 1977 (à paraître).Google Scholar
  8. 8.
    J. Serrin. On the stability of viscous fluid motions. Arch. ration. Mech. Anal. 3 (1959), 1–13.Google Scholar
  9. 9.
    G.I. Taylor. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. Lond. A 223 (1923), 289–343.Google Scholar
  10. 10.
    J.H. Argyris et G. Mareczek. Finite-element analysis of slow incompressible viscous fluid motion. Ing.-Arch. 43 (1974), 92–109.Google Scholar
  11. 11.
    C. Taylor et P. Hood. A numerical solution of the Navier-Stokes equations using the finite element technique. Computers and Fluids 1 (1973), 73–100.Google Scholar
  12. 12.
    J.H. Argyris. Finite elements in fluid mechanics. Art. in Computational Methods and Problems in Aeronautical Fluid Dynamics (Ed. B.L. Hewitt). London: Academic Press (1974).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • T. B. Benjamin
    • 1
  1. 1.Fluid Mechanics Research InstituteUniversity of EssexAngleterre

Personalised recommendations