Advertisement

Finite element methods and Navier-Stokes equations

  • P. A. Raviart
Foundations of Numerical Methods in Fluids Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 91)

Keywords

Finite Element Method Convective Term Stokes System Mixed Finite Element Method Incompressibility Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ 1 ]
    BABUŠKA I., “Error bounds for the finite element method” Numer. Math. 16 (1971), 322–333.Google Scholar
  2. [ 2 ]
    BENAZETH J. C., Thèse de 3ème cycle (to appear).Google Scholar
  3. [ 3 ]
    BERCOVIER M., “Perturbation of mixed variational problems, application to mixed finite element methods” (to appear in RAIRO, Anal. Numer.)Google Scholar
  4. [ 4 ]
    BERCOVIER M., and PIRONNEAU O., “Estimations d'erreurs pour le problème de Stokes en éléments finis de Lagrange”. C.R. Acad. Sci. (to appear).Google Scholar
  5. [ 5 ]
    BORREL M., Etude et mise en oeuvre d'une méthode d'éléments finis de résolution des équations de Navier-Stokes, Thèse de 3e cycle, Paris (1977).Google Scholar
  6. [ 6 ]
    BREZZI F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers”, R.A.I.R.O, Serie Anal. Numér. R.2, (1974) 129–151.Google Scholar
  7. [ 7 ]
    BREZZI F. and RAVIART P.A., “Mixed finite element methods for 4 th order elliptic equations”, Topics in Numerical Analysis III (J.J.H. Miller Ed.), Academic Press (to appear).Google Scholar
  8. [ 8 ]
    CIARLET P.G. and GLOWINSKI R., “Dual iterative techniques for solving a finite element approximation of the biharmonic equation“, Comp. Meth. Applied Mech. Eng 5 (1975), 277–295.Google Scholar
  9. [ 9 ]
    CIARLET P.G. and RVIART P.A., “A mixed finite element method for the biharmonic equation”, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, Ed.) Academic Press, N.Y. (1974), 125–145.Google Scholar
  10. [ 10 ]
    CROUZEIX M., “Etude d'une méthode de linéarisation. Résolution numérique des équations de Stokes stationnaires. Application aux equations de Navier-Stokes stationnaires”, Cahiers de 1'I.R.I.A no 12 (Mai 1974).Google Scholar
  11. [ 11 ]
    CROUZEIX M. and RAVIART P.A., “Conforming and nonconforming finite element methods for solving the stationary Stokes equations”, R.A.I.R.O., Serie Anal. Numér., R.3 (1973), 33–75.Google Scholar
  12. [ 12 ]
    FORTIN M., Calcul numérique des écoulements des fluides de Bingham et des fluides newtoniens incompressibles par la methode des éléments finis, Thèse, Paris (1972).Google Scholar
  13. [ 13 ]
    FORTIN M., “Résolution numérique des équations de Navier-Stokes par des éléments finis de type mixte”, 2nd International Symposium on Finite Element Methods in Flow Problems, S. Margherita Ligure (1976).Google Scholar
  14. [ 14 ]
    GALLAGHER R. H., ODEN J. T., TAYLOR C. and ZIENKIEWICZ O.C. (Editors), Finite Elements in Fluids, Wiley (1975).Google Scholar
  15. [ 15 ]
    GARTLING D.K. and BECKER E.B., “Finite element analysis of viscous incompressible fluid flow I”, Comp. Meth. Applied Mech. Eng. 8 (1976), 51–60.Google Scholar
  16. [ 16 ]
    GIRAULT.V., “A mixed finite element method for the stationary Stokes equations”, SIAM. J. Numer. Anal. (to appear).Google Scholar
  17. [ 17 ]
    GIRAULT V. and RAVIART P.A., “An analysis of mixed finite element methods for the Navier-Stokes equations”(to appear).Google Scholar
  18. [ 18 ]
    GLOWINSKI R., “Approximations externes par éléments finis de Lagrange d'ordre un et deux du problème de Dirichlet pour l'opérateur biharmonique”, Topics in Numerical Analysis (J.J.H. Miller, Ed.), Academic Press, London (1973), 123–171.Google Scholar
  19. [ 19 ]
    GLOWINSKI R. and PIRONNEAU O., “A mixed method for the biharmonic problem”, S.I.A.M. Review (to appear).Google Scholar
  20. [ 20 ]
    JAMET P. and RAVIART P.A., “Numerical solution of the stationary Navier-Stokes equations by finite element methods”, Lecture notes in Computer Science, Springer Verlag, 10 193-223.Google Scholar
  21. [ 21 ]
    LADYZHENSKAYA O.A., “The Mathematical Theory of Viscous Incompressible Flow”, Gordon and Breach, N.Y. (1969).Google Scholar
  22. [ 22 ]
    LESAINT P., “Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis”, Thèse, Paris (1975).Google Scholar
  23. [ 23 ]
    LESAINT P. and RAVIART P.A., “On a finite element method for solving the neutron transport equation”, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, Ed.), Academic-Press, N.Y. (1974), 89–123.Google Scholar
  24. [ 24 ]
    RAVIART P.A. and THOMAS J.M., “A mixed finite element method for 2nd order elliptic problems”, Lecture notes in Mathematics, Springer Verlag, 606, 292–315.Google Scholar
  25. [ 25 ]
    TAYLOR C. and HOOD P., “A numerical solution of the Navier-Sokes equations using the finite element technique”, Comp. and Fluids 1 (1973), 73–100.Google Scholar
  26. [ 26 ]
    TEMAM R., On the Theory and Numerical Analysis of the Navier-Stokes Equations, North-Holland, Amsterdam (1977).Google Scholar
  27. [ 27 ]
    THOMAS J.M., Sur l'Analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse, Paris (1977).Google Scholar
  28. [ 28 ]
    THOMAS SET F., “Numerical solution of the Navier-Stokes equations by finite element methods”, Von Karman Institute for fluid Dynamics, Lecture series 86 (1977).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • P. A. Raviart
    • 1
  1. 1.Université P. & M. CurieParis

Personalised recommendations