Advertisement

Numerical methods in fusion research

  • John Killeen
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 91)

Abstract

The numerical models used in fusion research are briefly reviewed. The application of implicit difference techniques to problems in resistive magnetohydrodynamics, transport and the Fokker-Planck equation is discussed.

Keywords

Runaway Electron Fusion Research Fusion Device Hybrid Code Energy Confinement Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Hain, G. Hain, K. V. Roberts, S. J. Roberts, and W. Kőppendőrfer, Z. Naturforsch. 15a, 1039 (1960).Google Scholar
  2. 2.
    K. V. Roberts and D. E. Potter, in Methods in Computational Physics (Academic Press, New York, 1970), Vol. 9, pp. 3640-417.Google Scholar
  3. 3.
    J. Killeen, in Information Processing 71 (North-Holland Publishing Company, Amsterdam, 1972), pp. 1191–1205.Google Scholar
  4. 4.
    J. U. Brackbill, in Methods in Computational Physics (Academic Press, New York, 1976), Vol. 16, pp. 1–41.Google Scholar
  5. 5.
    David Potter, ibid., pp. 43–84.Google Scholar
  6. 6.
    D. Biskamp in Proc. College of Theoretical and Computational Plasma Physics, Trieste 1977 (IAEA Vienna)Google Scholar
  7. 7.
    K. V. Roberts in these proceedings.Google Scholar
  8. 8.
    T. Lindemuth and J. Killeen, J. Comput. Phys. 13, 181 (1973).Google Scholar
  9. 9.
    R. Morse, in Methods in Computational Physics Academic Press, New York, 1970), Vol. 9, pp. 213–240.Google Scholar
  10. 10.
    J. T. Hogan, in Methods in Computational Physics (Academic Press, New York, 1976), Vol. 16, pp. 131–165.Google Scholar
  11. 11.
    M. L. Watkins, M. H. Hughes, P.M. Keeping, K. V. Roberts, and J. Killeen, ibid., pp. 166–210.Google Scholar
  12. 12.
    C. Mercier, J. P. Boujot, and F. Werkoff, Computer Physics Comm. 12 (1976)109.Google Scholar
  13. 13.
    D. Dűchs in these proceedings.Google Scholar
  14. 14.
    D. V. Anderson and J. Killeen, J. Comput. Phys. 10, 133 (1972).Google Scholar
  15. 15.
    Brendan McNamara, in Methods in Computational Physics(Academic Press, New York, 1976), Vol. 16, pp. 211–252.Google Scholar
  16. 16.
    K. Lackner, Computer Physics Comm. 12 (1976) 33.Google Scholar
  17. 17.
    R. C. Grimm, J. M. Greene, and J. L. Johnson, in Methods in Computational Physics (Academic Press, New York, 1976), Vol. 16, pp. 253–281.Google Scholar
  18. 18.
    F. Troyon and R. Gruber, in these proceedings.Google Scholar
  19. 19.
    J. M. Dawson, H. Okuda, and B. Rosen, in Methods in Computational Physics (Academic Press, New York, 1976), Vol. 16, pp. 282–326.Google Scholar
  20. 20.
    A. B. Langdon and B. Lasinski, ibid., pp. 327–366.Google Scholar
  21. 21.
    C. W. Nielson and H. R. Lewis, ibid., pp. 362–388.Google Scholar
  22. 22.
    J. Killeen and K. D. Marx, The Solution of the Fokker-Planck Equation for a Mirror-Confined Plasma, in Methods in Computational Physics (Academic Press, New York, 1970), Vol. 9, pp. 421–489.Google Scholar
  23. 23.
    J. Killeen, A. A. Mirin, and M. E. Rensink, in Methods in Computational Physics (Academic Press, New York, 1976), Vol. 16, pp. 389–432.Google Scholar
  24. 24.
    H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).Google Scholar
  25. 25.
    J. Killeen, in Physics of Hot Plasmas, Scottish Universities Summer School 1968, B. J. Rye and J. C. Taylor, Eds. (Oliver and Boyd, Edinburgh, 1970), pp. 202–255.Google Scholar
  26. 26.
    J. A. Dibiase and J. Killeen, Journal of Computational Physics 24 (1977) 158.Google Scholar
  27. 27.
    D. Schnack and J. Killeen, in Proc. Third International (Kiev) Conf. on Plasma Theory, Trieste 1977 (IAEA, Vienna)Google Scholar
  28. 28.
    D. Schnack, PhD thesis Univ. of California, Davis/Livermore (1977).Google Scholar
  29. 29.
    J. Killeen and A. I. Shestakov, to be published (1977).Google Scholar
  30. 30.
    P. H. Rutherford, Phys Fluids 16 (1973) 1903.Google Scholar
  31. 31.
    C. H. Finan III and J. Killeen, UCRL 79911 (1977).Google Scholar
  32. 32.
    R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems (Interscience-John Wiley, New York, 1967).Google Scholar
  33. 33.
    D. L. Jassby, Nuclear Fusion 17 (1977) 309.Google Scholar
  34. 34.
    A. A. Mirin, J. Killeen, K. D. Marx, and M. E. Rensink, Journal of Computational Physics 23 (1977) 23.Google Scholar
  35. 35.
    M. H. Hughes and D. E. Post, Princeton Plasma Physics Lab. Report PPPL-1335 (1977).Google Scholar
  36. 36.
    M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. 107, 1 (1957).Google Scholar
  37. 37.
    A. I. Shestakov and A. A. Mirin, private communication (1977).Google Scholar
  38. 38.
    J. W. Connor, Plasma Phys. 15, 765 (1973).Google Scholar
  39. 39.
    M. G. McCoy, J. Killeen, A. A. Mirin, M. E. Rensink, and D. Shumaker, UCRL 79891 (1977)Google Scholar
  40. 40.
    D. L. Jassby, R. M. Kulsrud, F. W. Perkins, J. Killeen, K. D. Marx, M. G. McCoy, A. A. Mirin, M. E. Rensink, and C. G. Tull, in Plasma Physics and Controlled Nuclear Fusion Research 1976 (IAEA Vienna 1977) vol II pp. 435–451.Google Scholar
  41. 41.
    A. A. Mirin and D. L. Jassby, UCRL 79796 (1977).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • John Killeen
    • 1
  1. 1.Magnetic Fusion Energy Computer Center Lawrence Livermore LaboratoryUniversity of CaliforniaLivermore

Personalised recommendations