Zur Komplexität der Presburger Arithmetik und des Äquivalenzproblems einfacher Programme

  • Kai Wöhl
Vorträge (In Alphabetischer Reihenfolge)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 67)


Presburger Arithmetic Simple Programming Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. Literatur

  1. /1/.
    J.Cherniavsky, S.Kamin: A complete and consistent Hoare axiomatic for a simple programming language, Conf. Report of 4th ACM-Symposium on Principles of Programming Languages, 1977Google Scholar
  2. /2/.
    D.C. Cooper: Theorem proving without multiplication, Machine Intelligence 7, S. 91–99, Edinburgh 1972Google Scholar
  3. /3/.
    P.C.Downey: Undecidability of Presburger Arithmetic with a single monadic letter, Center for Research in Computing Technologie, Harvard University, 18–72, 1972Google Scholar
  4. /4/.
    J.Ferrante,C.Rackoff: A decision procedure for the first order theory of real addition with order, SIAM J.Comp., Vol. 4 No. 1, 1975Google Scholar
  5. /5/.
    M.J.Fischer, M.O.Rabin: Super-exponential complexity of Presburger Arithmetic, SIAM-AMS Proceedings Vol. 7, 1974Google Scholar
  6. /6/.
    G. Kreisel, J.L. Krivine: Elements of mathematical logic, North-Holland, Amsterdam 1971Google Scholar
  7. /7/.
    A.R.Meyer,D.M.Ritchie: Computation complexity and program structure, IBM Research Report RC 1817, 1967Google Scholar
  8. /8/.
    D.C. Oppen: An upper bound on the complexity of Presburger Arithmetic JCSS 16, 323–332, 1978Google Scholar
  9. /9/.
    M.Presburger: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes-Rendus du Congrès des Mathématiciens des Pays Slaves, Warsaw 1930, S. 99–101, 395Google Scholar
  10. /10/.
    C.R.Reddy,D.W.Loveland: Presburger Arithmetik with bounded quantifier alternation, Conf. Report of 10th ACM-Symposium on Theory of Computing, 1978Google Scholar
  11. /11/.
    D. Tsichritzis: The equivalence problem of simple programs, JACM Vol. 17, No.4, S. 729–738, 1970CrossRefGoogle Scholar
  12. /12/.
    K.Wöhl: Äquivalenzuntersuchungen an einfachen Programmen (Dissertation), Bericht Nr. 56/78, Abteilung Informatik, Universität Dortmund, 1978Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Kai Wöhl

There are no affiliations available

Personalised recommendations