Une caracterisation de trois varietes de langages bien connues

  • J. E. Pin
Vorträge (In Alphabetischer Reihenfolge)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 67)


Operation Union Code prEfixe Syntactic Monoids Finite Monoids Suivante Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. BRZOZOWSKI et I. SIMON. Characterizations of locally testable events, Discrete Math. 4 (1973) 243–271.CrossRefGoogle Scholar
  2. [2]
    S. EILENBERG. Automata, Languages and Machines, Ac. Press. Vol A (1974) Vol B (1976.)Google Scholar
  3. [3]
    S.W. GOLOMB et B. GORDON. Codes with bounded synchronization delay. Information and Control 8-p 355–372 (1965).CrossRefGoogle Scholar
  4. [4]
    K. Hashiguchi et N. Honda: Properties of Code events and homomorphisms over regular events, J. Comp. Syst. Sci. 12 (1976) p. 352–367.Google Scholar
  5. [5]
    R. Mc NAUGHTON. Algebraic Decision Procedures for Local Testability. Math. Syst. Theory Vol 8 No 1.Google Scholar
  6. [6]
    J-F. PERROT. Informatique et Algèbre: la théorie des codes à longueur variable. Proceedings of the 3rd GI Conference, Lecture Notes in Computer Science No48, Springer (1977) p 27–44.Google Scholar
  7. [7]
    J-F. PERROT. On the theory of syntactic monoids for rational languages, dans: Fundamentals of Computation Theory, Lecture Notes in Computer Science No56 Springer (1977) 152–165.Google Scholar
  8. [8]
    J-F. PERROT. Variétés de langages et opérations. Theoretical Computer Science 7 (1978) 198–210.Google Scholar
  9. [9]
    J.E. PIN. Sur le monoïde syntactique de L* lorsque L est un langage fini. Theoretical Computer Science 7 (1978) p 211–215.CrossRefGoogle Scholar
  10. [10]
    A. RESTIVO. Codes and aperiodic languages in 1. Fachtagung über Automatentheorie und formalle Sprachen, Lecture Notes in Computer Science No2, Springer (1973) p 175–181.Google Scholar
  11. [11]
    A. RESTIVO. On a question of Mc Naughton and Papert. Information and Control Vol 25, No1 mai 1974 p 93–101.CrossRefGoogle Scholar
  12. [12]
    M.P. SCHÜTZENBERGER. Sur certaines pseudovariétés de monoïdes finis. IRIA-Laboria. Rapport de Recherche No62, 1974.Google Scholar
  13. [13]
    M.P. SCHÜTZENBERGER. On finite monoids having only trivial subgroups. Information and Control 8 (1965) 190–194.CrossRefGoogle Scholar
  14. [14]
    M.P. SCHÜTZENBERGER. Sur certaines opérations de fermeture dans les langages rationnels. Istituto Nazionale di Alta Mathematica. Symposia Mathematica Vol XV (1975).Google Scholar
  15. [15]
    M.P. SCHÜTZENBERGER. Sur le produit de concaténation non ambigü. Semigroup Forum I 3, p 47–75 (1975)Google Scholar
  16. [16]
    M.P. SCHÜTZENBERGER. On an application of semigroup methods to some problems in coding, I.R.E. Trans. on Information theory, I.T.2, (1956) 47–60Google Scholar
  17. [17]
    I. SIMON. Piece wise testable events. 2nd GI Conference Lecture Notes in Computer Science, Springer Verlag (1976) p 214–222Google Scholar
  18. [18]
    Y. ZALCSTEIN. Locally testable languages, J. Comput System Sci 6 (1972), 151–167.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • J. E. Pin

There are no affiliations available

Personalised recommendations