Advertisement

Node-visit optimal 1 – 2 brother trees

  • Th. Ottmann
  • A. L. Rosenberg
  • H. W. Six
  • D. Wood
Vorträge (In Alphabetischer Reihenfolge)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 67)

Abstract

We characterize node-visit optimal 1–2 brother trees and present a linear time algorithm to construct them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelson-Velskii, G.M. and Landis, Y.M.: An algorithm for the organization of information, Doklady Akademij Nauk SSSR 146, 1962, 263–266.Google Scholar
  2. 2.
    Aho, A.V., Hopcroft, J.E., and Ullman, J.D.: The design and analysis of computer algorithms, Addison-Wesley, Reading Mass., 1974.Google Scholar
  3. 3.
    Miller, R., Pippenger, N., Rosenberg, A., and Snyder, L.: Optimal 2,3-trees. IBM Res. Rep. RC 6505, 1977, to appear in SIAM J.Comp.Google Scholar
  4. 4.
    Ottmann, Th., and Six, H.W.: Eine neue Klasse von Binärbäumen. Angewandte Informatik 8, 1976, 395–400.Google Scholar
  5. 5.
    Ottmann, Th., Six, H.W., and Wood, D.: Right brother trees. Comm. ACM 21, 1978, 769–776.CrossRefGoogle Scholar
  6. 6.
    Ottmann, Th., and Wood, D.: 1–2 brother trees or AVL trees revisited, To appear in The Computer Journal.Google Scholar
  7. 7.
    Ottmann, Th., Rosenberg, A.L., Six, H.W., and Wood, D.: Minimal-Cost Brother Trees, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Report 73, Karlsruhe, 1978.Google Scholar
  8. 8.
    Rosenberg, A., and Snyder, L.: Minimum comparison 2, 3 trees, IBM Res. Rep. RC6551, 1977. To appear in SIAM J.Comp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Th. Ottmann
  • A. L. Rosenberg
  • H. W. Six
  • D. Wood

There are no affiliations available

Personalised recommendations