On zerotesting-bounded multicounter machines

  • Matthias Jantzen
Vorträge (In Alphabetischer Reihenfolge)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 67)


Reachability Problem Deterministic Finite Automaton Counter Machine Proper Subclass Counter Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.M. AUTEBERT, Non principalité du Cylindre des Langes a Compteur, Math. Syst. Theory, vol. 11, (1977), p. 157–167.CrossRefGoogle Scholar
  2. [2]
    B.S. BAKER and R.V. BOOK, Reversal-Bounded Multipushdown Machines, J. Comp. Syst. Sc., vol. 8, (1974), p. 315–332.Google Scholar
  3. [3]
    S. CRESPI-REGHIZZI and D. MANDRIOLI, Petri Nets and Szilard Languages, Information and Control, vol. 33, (1977), p. 177–192.CrossRefGoogle Scholar
  4. [4]
    S.GINSBURG, Algebraic and Automata-Theoretic Properties of Formal Languages, North-Holland Publ. Comp., (1975).Google Scholar
  5. [5]
    J.GOLDSTINE, Automata with Data Storage, Proc. 10th annual ACM Symp. on Theory of Computing, (1978)Google Scholar
  6. [6]
    S.A. GREIBACH, An Infinite Hierarchy of Context-Free Languages, J. Assoc. Computing Machinery, vol. 16, (1969), p. 91–106.Google Scholar
  7. [7]
    S.A. GREIBACH, The Hardest Context-Free Language, SIAM J. of Comp., vol. 2, (1973), p. 304–310.CrossRefGoogle Scholar
  8. [8]
    S.A. GREIBACH, Remarks on the Complexity of Nondeterministic Counter Languages, Theoretical Computer Science, vol. 1, (1976), p. 269–288.CrossRefGoogle Scholar
  9. [9]
    S.A.GREIBACH, Remarks on Blind and Partially Blind One-Way Multicounter Machines, Theoretical Computer Science, to appear.Google Scholar
  10. [10]
    M.HACK, Petri Net Languages, Computation Structures Group Memo 124, Project MAC, MIT, (1975).Google Scholar
  11. [11]
    M.HÖPNER, Über den Zusammenhang von Szilardsprachen und Matrixgrammatiken, Technical report, Univ. Hamburg, IFI-HH-B-12/74, (1974).Google Scholar
  12. [12]
    M. HÖPNER and M. OPP, About Three Equational Classes of Languages Built up by Shuffle Operations, Lecture Notes in Comp. Sc., Springer, vol. 45, (1976), p. 337–344.Google Scholar
  13. [13]
    O.H. IBARRA, Reversal-Bounded Multicounter Machines and Their Decision Problems, J. Assoc. Computing Machinery, vol. 25, (1978), p. 116–133.Google Scholar
  14. [14]
    M.JANTZEN, On the Hierarchy of Petri Net Languages, R.A.I.R.O. Informatique théorique, to appear.Google Scholar
  15. [15]
    M.JANTZEN, Eigenschaften von Petrinetzsprachen, Research report, Univ. Hamburg, (1978).Google Scholar
  16. [16]
    M. LATTEUX, Cônes Rationelles Commutativement Clos, R.A.I.R.O. Informatique théorique, vol. 11, (1977), p. 29–51.Google Scholar
  17. [17]
    J.L. PETERSON, Computation Sequence Sets, J. Comp. Syst. Sc., vol. 13, (1976), p. 1–24.Google Scholar
  18. [18]
    G.S.SACERDOTE and R.L.TENNEY, The Decidability of the Reachability Problem for Vector-Addition Systems, Proc. 9th annual ACM Symp. on Theory of Computing, (1977), p. 61–76.Google Scholar
  19. [19]
    P.H. STARKE, Free Petri Net Languages, Lecture Notes in Comp. Sc., Springer, vol. 64, (1978), p. 506–515.Google Scholar
  20. [20]
    R. VALK, Self-Modifying Nets, a Natural Extension of Petri Nets, Lecture Notes in Comp. Sc., Springer, vol. 62, (1978), p. 464–476.Google Scholar
  21. [21]
    C. WRATHALL, Rudimentary Predicates and Relative Computation, SIAM J. Computing, vol. 7, (1978), p. 194–209.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Matthias Jantzen

There are no affiliations available

Personalised recommendations