A new recursion induction principle

  • Gerard Boudol
Vorträge (In Alphabetischer Reihenfolge)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 67)


In this paper, a new recursion induction principle is formulated, by means of the "parallel outermost" computation rule, which allows us to validate a scheme of transformations and a method for proving strong equivalences.


Function Symbol Algebraic Semantic Computation Rule Induction Principle Strict Partial Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. BOUDOL & L. KOTT — "Recursion Induction Principle Revisited", Rapport du LITP, LA 248, CNRS & Univ. Paris VII (1978).Google Scholar
  2. [2]
    R. BURSTALL — "Proving Properties of Programs by Structural Induction", Computer J. 12 (1969) 41–48.Google Scholar
  3. [3]
    R. BURSTALL & J. DARLINGTON — " A Transformation System for Developping Recursive Programs", JACM 24 (1977) 44–67CrossRefGoogle Scholar
  4. [4]
    B. COURCELLE — "On Recursive Equations Having a Unique Solution", 19 th FOCS (1978).Google Scholar
  5. [5]
    B. COURCELLE & M. NIVAT — "Algebraic Families of Interpretations", 17th FOCS (1876).Google Scholar
  6. [6]
    B. COURCELLE & M. NIVAT — "The Algebraic Semantics of Recursive Program Schemes", 7th MFCS, Zakopane, Poland (1978).Google Scholar
  7. [7]
    B. COURCELLE & J. VUILLEMIN — "Completeness Results for the Equivalence of Recursive Schemes", JCSS 12 (1976) 179–197.Google Scholar
  8. [8]
    J. de BAKKER & D. SCOTT — "A Theory of Programs", unpublished notes (1969).Google Scholar
  9. [9]
    P.J. DOWNEY & R. SETHI — "Correct Computation Rules for Recursive Languages", 16th FOCS (1975) 48–56.Google Scholar
  10. [10]
    J. GOGUEN, J.W. THATCHER, E. WAGNER & J.B. WRIGHT — "Initial Algebra Semantics and Continuous Algebras", JACM 24 (1977) 68–95.CrossRefGoogle Scholar
  11. [11]
    I. GUESSARIAN — "Semantic Equivalence of Program Schemes and its Syntactic Characterization", 3rd ICALP, Edinburgh (1976) 189–200.Google Scholar
  12. [12]
    G. HUET — "Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems", 18th FOCS (1977).Google Scholar
  13. [13]
    L. KOTT — "About a Transformation System: a Theoretical Study", in "Program Transformations" (B. Robinet, Ed.), 3RD International Coll. on Programmation, Paris (1978) 232–247.Google Scholar
  14. [14]
    Z. MANNA, S. NESS & J. VUILLEMIN — "Inductive Methods for Proving Properties of Programs", CACM 16 (1973) 491–502.Google Scholar
  15. [15]
    R. MILNER — "Models of LCF", Stanford AI Labo Memo — AIM 184 (1973).Google Scholar
  16. [16]
    J.H. MORRIS — "Another Recursion Induction Principle", CACM 14 (1971) 351–354.Google Scholar
  17. [17]
    M. NIVAT — "On the Interpretation of Recursive Polyadic Program Schemes", Symposia Matematica XV, Bologna (1975) 255–281.Google Scholar
  18. [18]
    M. NIVAT — "Interprétation Universelle d'un schéma de programmes récursif", Informatica VII, Supp. al no 1 (1977) 9–16.Google Scholar
  19. [19]
    B.K. ROSEN — "Tree-Manipulating Systems and Church-Rosser Theorems", JACM 20 (1973) 160–187.CrossRefGoogle Scholar
  20. [20]
    J. VUILLEMIN — "Correct and Optimal Implementation of Recursion in a simple Programming Language", JCSS 9 (1974) 332–354.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Gerard Boudol

There are no affiliations available

Personalised recommendations