The strange behaviour of nuclei at high spin states

  • Amand Faessler
A. Invited Talks and Contributed Papers Presented Orally
Part of the Lecture Notes in Physics book series (LNP, volume 92)


(i) The deexcitation into particles and y rays of a high angular momentum compound nucleus formed in a fusion reaction is studied. In the energy region where particle emission is not possible the competition between statistical and collective transitions is taken into account. The side feeding pattern and the γ multiplicities can only be explained if one assumes that each state is a member of a rotational band and can decay by an E2 transition of about 150 s.p.u. along this band and with about 10−3 s.p.u. by a statistical E1 transition. The y cascades run therefore through an irregular mixture of statistical and collective transitions before hitting the yrast line. (ii) In the second part it is shown that in typical rare earth nuclei one finds no rotation around a strongly deformed oblate symmetry axis as predicted by the liquid drop model. But calculations of the deformation energy surface show that [in front and after] the rare earth region one finds rotation around a symmetry axis of nuclei with a slightly oblate shape above a doubly closed shell nucleus (14664Gd82) and with a slightly prolate shape below a doubly closed shell nucleus (20882Pb126). This behaviour can be understood by the MONA effect, which yields for a few particles or holes outside a closed shell a strong correlation between the high angular momentum of the nucleus, its shape and the direction of the rotational axis.


Angular Momentum Compound Nucleus Collective Transition Liquid Drop Model High Angular Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Wakai, A. Faessler, accepted in Nucl.Phys.Google Scholar
  2. 2.
    R.J. Liotta, R.A. Sorensen, Nucl.Phys. A297 (1978) 136Google Scholar
  3. 3.
    J.O. Newton et al., Proc. Int. Conf. on Nucl. Structure, Tokyo 1977, ed. by T. Marumori, Suppl.J.Phys.Soc.Japan 44 (1978)Google Scholar
  4. 4.
    S. Cohen, F. Plasil, W.J. Swiatecki, Ann.Phys. 82 (1974) 557Google Scholar
  5. 5.
    A. Bohr, B.R. Mottelson, Physica 10A (1974) 13Google Scholar
  6. 6.
    D.G. Sarantites et al., Nucl.Phys. A93 (1967) 545, A180 (1972) 177Google Scholar
  7. 7.
    G.B. Hagemann et al., Nucl.Phys. A245 (1975) 166Google Scholar
  8. 7a.
    R. Broda et al., Nucl.Phys. A248 (1975) 356Google Scholar
  9. 8.
    M. Ploszajczak, H. Toki, A. Faessler, Z.Physik A287 (1978) 103Google Scholar
  10. 9.
    G. Andersson et al., Nucl.Phys. A268 (1976) 205 and preprint 1978Google Scholar
  11. 10.
    K. Neergard, H. Toki, M. Ploszajcza, A. Faessler, Nucl.Phys. A287 (1977) 48Google Scholar
  12. 10a.
    M. Ploszajczak, H. Toki, A. Faessler, J.Phys.G: Nucl.Phys. 4 (1978) 743Google Scholar
  13. 11.
    M. Ploszajczak, A. Faessler, G. Leander, S.G. Nilsson, accepted in Nucl.Phys.Google Scholar
  14. 12.
    K. Matsuyanagi, T. Døssing, K. Neergard, preprint 1978Google Scholar
  15. 13.
    A. Faessler, M. Ploszajczak, K.R. Sandhya Devi, Phys.Rev.Lett. 36 (1976) 1028Google Scholar
  16. 14.
    J. Pedersen et al., Phys.Rev,Lett. 39 (1977) 990Google Scholar
  17. 15.
    R. Broda, M. Ogawa, S. Lunardi, M.R. Meier, P.J. Daly, P. Kleinheinz, Z.Physik A285 (1978) 423Google Scholar
  18. 16.
    A. Faessler, K.R. Sandhya Devi, F. Grümmer, K.W. Schmid, R.R. Hilton, Nucl.Phys. A256 (1976) 106Google Scholar
  19. 16a.
    A. Faessler, K.R. Sandhya Devi, A. Barroso, Nucl.Phys. A286 (1977) 101Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Amand Faessler
    • 1
    • 2
  1. 1.Institut für Kernphysik der KFA JülichJülichW.-Germany
  2. 2.University of BonnBonnW.-Germany

Personalised recommendations