Measurement of quadrupole moments through Coulomb excitation

  • D. C. Kean
A. Invited Talks and Contributed Papers Presented Orally
Part of the Lecture Notes in Physics book series (LNP, volume 92)


The measurement of quadrupole moments of nuclear excited states using the reorientation effect is a worthwhile but experimentally challenging task. The majority of the inconsistencies in previous measurements have been due to experimental errors incompatible with the precision that is required; the remainder resulted from two effects, deorientation and Coulomb-nuclear interference, the importance of which are now recognised; the latter problem can be avoided by measurement of relevant excitation functions through the region of the Coulomb barrier. Although the current discrepancy between reorientation and muonic x-ray measurements for the osmium isotopes is worthy of further investigation, there is no evidence, even in cases where the Coulomb excitation probability is very small, to indicate any other reaction processes which significantly affect quadrupole moment values determined using the reorientation effect. It is likely that reorientation measurements will in future prove a reliable and valuable aid in testing the theories of nuclear structure.


Quadrupole Moment Giant Dipole Resonance Coulomb Excitation Electric Quadrupole Moment Excitation Probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matthias, E. 1973. J.Phys.Soc.Japan l, Supplement:78–106.Google Scholar
  2. 2.
    Hoehn, M.V., E.B. Shera, Y. Yamazaki and R.M. Steffen, 1977. Phys.Rev.Lett. 39:1313–1316.Google Scholar
  3. 3.
    Hasselgren, L., C. Fahlander, F. Falk, L.O. Edvardson, J.E. Thun, B.S. Ghuman and B. Skaali, 1976. Nucl.Phys. A264:341–364.Google Scholar
  4. 4.
    de Boer, J. and J. Eichler, 1968. Advances in Nuclear Physics 1:1–65.Google Scholar
  5. 5.
    Häusser, O., 1974. Nuclear Spectroscopy and Reactions C, ed. J. Cerny (Academic Press) 55–91.Google Scholar
  6. 6.
    Winther, A. and J. de Boer, 1966. Coulomb Excitation, ed. K. Alder and A. Winther (Academic Press):303–374.Google Scholar
  7. 7.
    Esat, M.T., D.C. Kean, R.H. Spear and A.M. Baxter, 1976. Nucl.Phys. A274:237–252.Google Scholar
  8. 8.
    Christy, A. and O. Hausser, 1972. Nucl.Data Tables 11:281–298.Google Scholar
  9. 9.
    Hall, I., M.F. Nolan, D.J. Thomas and M.J. Throop, 1974. J.Phys. A7:50–57.Google Scholar
  10. 10.
    Naquib, I.M., A. Christy, I. Hall, M.F. Nolan and D.J. Thomas, 1977. J.Phys. G3:507–517.Google Scholar
  11. 11.
    Watanuki, G., Y. Miyanishi and M. Yasuna, 1978. Prog.Theor.Phys. 59:790–803.Google Scholar
  12. 12.
    Sips, L., 1971. Phys.Lett. 36B:193–195.Google Scholar
  13. 13.
    Sorensen, B., 1973. Nucl.Phys. A217:505–524.Google Scholar
  14. 14.
    Maynard, M., D.C. Palmer, J.R. Cresswell, P.D. Forsyth, I. Hall and D.G.D. Martin, 1977. J.Phys. G3:1735–1752.Google Scholar
  15. 15.
    Steadman, S.G., A.M. Kleinfeld, G.G. Seaman, J. de Boer and D. Ward, 1970. Nucl.Phys. A155:1–20.Google Scholar
  16. 16.
    Gillespie, W.A., M.W.S. Macauley, A. Johnston, E.W. Lees and R.P. Singhal, 1977. J.Phys. G3:L169–173.Google Scholar
  17. 17.
    Kleinfeld, A.M., J.O. Rogers, J. Gastebois, S.G. Steadman and J. de Boer, 1970. Nucl.Phys. A158:81–87.Google Scholar
  18. 18.
    Berant, Z., R.A. Eisenstein, Y. Horowitz, U. Smilansky, P.N. Tandon, J.S. Greenberg, A.M. Kleinfeld and H.G. Maggi, 1972. Nucl.Phys. 196:312–336.Google Scholar
  19. 19.
    Saladin, J.X., J.E. Glenn and R.J. Pryor, 1969. Phys.Rev. 186:1241–1249.Google Scholar
  20. 20.
    Ben Zvi, I., P. Gilad, M. Goldberg, G. Goldring, A. Schwarzschild, A. Sprinzak and Z. Vager, 1968. Nucl.Phys. A121:592–611.Google Scholar
  21. 21.
    Thomson, J.A., R.P. Scharenberg, W.R. Lutz and R.D. Larsen, 1973. Phys.Rev. C7:1413–1418.Google Scholar
  22. 22.
    Lutz, W.R., J.A. Thomson, R.P. Scharenberg, R.D. Larsen and R.G. Kerr, 1973. Phys.Rev. C8:391–397.Google Scholar
  23. 23.
    Russo, P., J.K. Sprinkle, D. Cline, P.B. Vold and R.P. Scharenberg, to be published.Google Scholar
  24. 24.
    Powers, R.J., 1977. Hyperfine Interactions 4:123–143.Google Scholar
  25. 25.
    Joye, A.M.R., A.M. Baxter, M.P. Fewell, D.C. Kean and R.H. Spear, 1977. Phys.Rev.Lett. 38:807–810.Google Scholar
  26. 26.
    Kleinfeld, A.M., K.P. Lieb, D. Werdecker and U. Smilansky, 1975. Phys.Rev.Lett. 35:1329–1332.Google Scholar
  27. 27.
    Vold, P.B., D. Cline, P. Russo, J.K. Sprinkle, R.P. Scharenberg and R.J. Mitchell, 1977. Phys.Rev.Lett. 39:325–328.Google Scholar
  28. 28.
    Flaum, C., J. Barrete, M.J. Levine and C.E. Thorn, 1977. Phys.Rev.Lett. 39:446–449.Google Scholar
  29. 29.
    Dehnhard, D., D.J. Weber, D. Palmer, R.J. Falkenberg, J.L. Artz, T.K. Li and D. Ingham, 1977. Proc. of Conf. on Physics of Medium-Light Nuclei, Florence:32.Google Scholar
  30. 30.
    Erikson, T. and G.E. Brown, 1977. Nucl.Phys. A277:1–14.Google Scholar
  31. 31.
    Engeland, T. and P.J. Ellis, 1976. Phys.Rev.Lett. 36:994–995 and priv.comm.Google Scholar
  32. 32.
    Wildenthal, B.H., J.B. McGrory and P.W.M. Glaudemans, 1971. Phys.Rev.Lett. 26:96–99.Google Scholar
  33. 33.
    Lawson, R.D., F.J.D. Serduke and H.T. Fortune, 1976. Phys.Rev. C14:1245–1263.Google Scholar
  34. 34.
    Klingenbeck, K., 1977. Phys.Rev. C15:831–833.Google Scholar
  35. 35.
    Morrison, I., R. Smith, P. Nesci and K. Amos, 1978. Phys.Rev. C17:1485–1494.Google Scholar
  36. 36.
    Disdier, D.L., O. Hausser, A.J. Ferguson and T.K. Alexander, 1972. Ref. in Nucl.Data A11:281–298.Google Scholar
  37. 37.
    Fewell, M.P., D.C. Kean, R.H. Spear and A.M. Baxter, 1977. J.Phys. G3:L27–31.Google Scholar
  38. 38.
    Levine, M.J., 1978. Bull.Am.Phys.Soc. 23:42 and priv.comm.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • D. C. Kean
    • 1
    • 2
  1. 1.Office of National AssessmentsCanberraAustralia
  2. 2.Department of Nuclear Physics, Research School of Physical SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations