Algorithmes pour un probleme inverse discret de sturm-liouville

  • P. Morel
Part II: Five Lectures on Special Applications and One Theoretical Lecture on Solutions of Inverse Problems
Part of the Lecture Notes in Physics book series (LNP, volume 85)


Projection Successives Matrice Doublement Spectre Vis4 Nous Donnons Doublement Stochastique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    De OLIVEIRA G.-Note on inverse characteristic problem. Numer. Math Vol 15, (1970)339–341.Google Scholar
  2. [2]
    HADELER K. P.-Ein inverses Eigen wert problem. Linear algebra and its appl. Vol 1, (1968), 83–101.Google Scholar
  3. [3]
    HADELER K. P.-Newton-Verfahren für inverse Eigenwertaufgen. Num. Math. Vol 12, (1968), 35–39.Google Scholar
  4. [4]
    LABORDE F.-Sur un problème inverse de valeurs propres. CRAS tome 268, (1969), 153–156.Google Scholar
  5. [5]
    CHATELIN-LABORDE F.-Thèse Mathodes numériques de calcul de valeurs propres et vecteurs propres d'un opérateur linéaire. Grenoble 1971.Google Scholar
  6. [6]
    MOREL P.-A propos d'un problème inverse de valeurs propres. GRAS tome 277, (1973), 125–128.Google Scholar
  7. [7]
    MOREL P.-Sur le problème inverse des valeurs propres. Numer. Math. 23, (1974), 83–94.Google Scholar
  8. [8]
    HALD O.-On discrete and numerical inverse Sturin-Liouville problems, Uppsala University, Dep. of Computer Sciences, Report 42, 1972.Google Scholar
  9. [9]
    FRIEDLAND S.-Matrices with prescribed off diagonal elements, Israel J. of Math. Vol 11, (1972), 184–189.Google Scholar
  10. [10]
    FRIEDLAND S.-inverse eigenvalue problems. A paraitre.Google Scholar
  11. [11]
    WILKINSON-The algebric eigenvalue problem.Oxford University Press (1965).Google Scholar
  12. [12]
    KATO T.-Perturbation Theory of linear operators. Springer Verlag (1966).Google Scholar
  13. [13]
    LANCASTER P.-On eigenvalues of matrices dependent on a parametor. Numer. Math Vol 6, (1964),.377–387.Google Scholar
  14. [14]
    HORN A.-Doubly stochastic matrices and the diagonal of a rotation matrice. Amer. J. Math. Vol 76, (1954), 620–630.Google Scholar
  15. [15]
    HARDY-LITTLEWOOD-POLYA-Inegalities,Cambridge University Press (1948).Google Scholar
  16. [16]
    ORTEGA-RHEINBOLDT-Iterature solution of non linear equations in several variables, Academic Dress (1970).Google Scholar
  17. [17]
    WILKINSON-REINSCH-Linear algebra. Handbook for compotations. Springer Verlag.Google Scholar
  18. [18]
    CEA J.-Optimisation, théorie et algorithmes. Dunod 1971.Google Scholar
  19. [19]
    GUBIN-POLYAK-RAIK-The method of projections for fonding the common point of convex sets. USSR Comp. Math and Math Phys. Vol 6, (1967), 1–24.Google Scholar
  20. [20]
    PIERRA G.-Sur le croissement de méthodes de descente. CRASSt 277, (1973) 1071–1074.Google Scholar
  21. [21]
    WIELANDT-HOFFMAN-The variation of the spectrum of a normal matrix, Doke J. of Math Vol 20, (1953), 37–39.Google Scholar
  22. [22]
    GOLSTEIN A.-Constructive real analysis. Harper International Edition (1967).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • P. Morel
    • 1
  1. 1.Université de Bordeaux ITalenceFrance

Personalised recommendations