On the regularization of linear inverse problems in Fourier optics

  • M. Bertero
  • C. De Mol
  • G. A. Viano
Part I : Fifteen Review Lectures on Applied Inverse Problems
Part of the Lecture Notes in Physics book series (LNP, volume 85)


Least squares regularization methods for ill-posed problems are reviewed and applied to image extrapolation and object restoration in optics. The stabilizing constraints and the kind of continuity they ensure are discussed from a physical point of view.


Regularization Method Stability Estimate Linear Continuous Operator Weak Stability Linear Inverse Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARSENIN V.Ya. and IIVANOV V.V.: The solution of certain convolution type integralv equations of the first kind by the regularization method. Ž. Vyĉisl. Mat. i Mat. Fiz. 8, 2, 310–321 (1968a).Google Scholar
  2. ARSENIN V.Ya. and IVANOV V.V.: The effect of regularization of order Ž. Vyĉisl. Mat. i Mat. Fiz. 8, 3, 661–663 (1968b).Google Scholar
  3. BERTERO M. and VIAND G.A.: On probabilistic methods for the solution of improperly posed problems. To appear in Boll. Un. Mat. Ital. (1978).Google Scholar
  4. BERTERO M.,DE MOL C. and VIAND G.A.: On the problems of object restoration and image extrapolation in optics, preprint Genova(1978).Google Scholar
  5. FRANKLIN J.N.: Well-posed stochastic extensions of ill-posed linear problems. J. Math. Analysis and Applications 31, 682–716 (1970).Google Scholar
  6. FRIEDEN B.R.: Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. Progress in Optics, Vol. 9, 311–407 (1971).Google Scholar
  7. FRIEDEN B.R.: Image enhancement and restoration. Topics in Applied Physics, Vol. 6, 177–248 (1975).Google Scholar
  8. JOHN F.: A note on improper problems in partial differential equations. Comm. Pure Appl. Math. 8, 591–594 (1955).Google Scholar
  9. JOHN F.: Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13, 551–585 (1960).Google Scholar
  10. LAVRENTIEV M.M.: On the Cauchy problem for the Laplace equation. Isvestiya Akademii Nauk SSSR. Seriya Matematiceskaya 20, 819–842 (1956).Google Scholar
  11. LAVRENTIEV M.M.: Some improperly posed problems of mathematical physics (Springer, 1967).Google Scholar
  12. MILLER K.: Three circle theorems in partial differential equations and applications to improperly posed problems, Arch. Rational Mech. Anal. 16, 126–154 (1964).Google Scholar
  13. MILLER K.: Least squares methods for ill-posed problems with a prescribed bound, SIAM. Math. Anal. 1, 52–74 (1970).Google Scholar
  14. MILLER K. and VIAND G.A.: On the necessity of nearly-best-possible methods for analytic continuation of scattering data, J. Math. Phys. 14, 1037–1048 (1973).Google Scholar
  15. MOROZOV V.A.: Choice of parameter for the solution of functional equations by the regularization method, Soviet Math. Dokl., 8, 4, 1000–1003 (1967).Google Scholar
  16. PAYNE L.E.: Some general remarks on improperly posed problems for partial differential equations, in Lecture Notes in Mathematics, 316, 1–30 (Springer, 1973).Google Scholar
  17. PAYNE L.E.: Improperly posed problems in partial differential equations, Regional Conference Series in Applied Mathematics, N. 22 (SIAM, 1975).Google Scholar
  18. PUCCI C.: Sui problemi di Cauchy non ben posti. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8) 18, 473–477 (1955).Google Scholar
  19. PUCCI C.: Discussione del problema di Cauchy per le equazioni di tipo ellittico. Annali di Matematica Pura ed Applicata, Series 4, 66, 131–154 (1958).Google Scholar
  20. TALENTI G.: Sui problemi mal posti. To appear in Boll. Un. Mat. Ital. (1978).Google Scholar
  21. TIKHONOV A.N.: Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4, 1035–1038 (1963).Google Scholar
  22. TIKHONOV A.N. et ARSENINE V.: Méthodes de résolution de problèmes mal posés, (MIR, 1976).Google Scholar
  23. VIANO G.A.: On the extrapolation of optical image data.J. Math. Phys., 17, 1160–1165 (1976).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. Bertero
    • 1
  • C. De Mol
    • 2
  • G. A. Viano
    • 1
  1. 1.Istituto di Scienze Fisiche dell'Università and Istituto Nazionale di Fisica NucleareGenova
  2. 2.Aspirant F.N.R.S., Département de MathématiqueUniversité Libre de BruxellesFrance

Personalised recommendations