Application of linear programming to the inverse gravity or magnetic problem basic numerical techniques

Part I: Fifteen Review Lectures on Applied Inverse Problems
Part of the Lecture Notes in Physics book series (LNP, volume 85)


Linear programming using the Bartels-Golub decomposition of the basis and the “steepest edge” strategies for column pivoting is relevant to linear inverse problems.


Simplex Method Simplex Algorithm Positivity Constraint Basic Feasible Solution Linear Programming Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartels, R.H., Stoer, J., Zenger C.H. (1971): A realisation of the simplex method based on triangular decomposition in vol 2: Handbook for automatic computation J.H. Wilkinson and C. Reinsh editors, Berlin, Springer Verlag 152–190.Google Scholar
  2. Bartels, R.H. (1971): A stabilisation of the simplex method Numer Math 46, 414–434.Google Scholar
  3. Bourmatte (1977): These de 3ième cycle. CGG Montpellier.Google Scholar
  4. Dantzig, G.B (1963): Linear programming and extensions. Princeton University Press.Google Scholar
  5. Golstein, E., Youdine, D. (1973): Problèmes particuliers de la programmation liné-aire. Mir. Moscow.Google Scholar
  6. Householder, A.S (1964): The theory of matrices in numerical analysis Blaisdell Publishing Compagny New York p 123.Google Scholar
  7. Kuhn, H.W., Quandt, R.E (1963): An experimental study of the simplex method in Proceeding of Symposia an Applied mathematics vol XV. Amer. Math. Soc. Providence. p 107–124.Google Scholar
  8. Reid, J.K. (1975) Sparce in-core linear programming in Lecture Notes in Mathematics vol 506 p 176–189 Springer-Verlag.Google Scholar
  9. Rodkafellar, R.T (1970): Convex analysis. Princeton University Press.Google Scholar
  10. Sabatier PC (1977a): Positivity constraints in linear inverse problem: General theory:I Geophys. J. Roy. Astr. Soc. vol 48 p 415–422.Google Scholar
  11. Sabatier PC (1977b): Positivity constraints in linear inverse problems: II Applications. Geophys, J. Roy. Astr. Soc. Vol 48 p 443–469.Google Scholar
  12. Safon C, Vasseur G, Cuer M: (1977) Some applications of linear programming to the inverse gravity problem. Geophysics, Vol 42 N°6 p 1215–1229.Google Scholar
  13. Stoer, J. Witzgall, C. (1970): Convexity and optimization in finite dimensions I Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • M. Cuer
    • 1
  1. 1.Département de Physique MathématiquesUniversité des Sciences et Techniques du LanguedocMontpellier CedexFrance

Personalised recommendations