# Inverse methods applied to continuation problems in geophysics

• V. Courtillot
• J. Ducruix
• J. L. Le Mouël
Part I: Fifteen Review Lectures on Applied Inverse Problems
Part of the Lecture Notes in Physics book series (LNP, volume 85)

## Abstract

This paper focuses on the application of inverse methods to continuation problems in geophysics. It is divided in three sections. The first introductory section lists a number of continuation problems which are of interest to geo physicists and gives a brief review of earlier work on the subject. The second section is devoted to the solution we have developed in three papers from 1973 to 1975, which we have further generalized and termed a global inverse method. This method is equally applicable to two- and three-dimensional problems. A particular solution of the problem is found as a linear combination of continuation kernels expressed at the observation points (they generate a vector space En); this solution is acceptable i.e. consistent with the data. The general solution of the problem requires that solutions from the null space of the kernels be added to the particular solution belonging to En. The properties of the Gram matrix built from the continuation kernels are investigated. one important result provided by the global inverse method is that an analytic expression of the elements of this matrix is easily obtained when the concept of images is introduced. We also show how an approximate Green's function for the irregular surface over which the data points are distributed can be found. In the third section we compare the global inverse method with generalized inverse matrix theory. When the latter theory is generalized to the case when one dimension becomes infinite the two formalisms are equivalent. We show how the concepts of resolution and information density are related in the two methods and investigate the properties of the base of eigenfunctions of the problem. Expanding the solution over this base leads to the concept of ranking and winnowing (Gilbert, 1971) and allows the computation of various covariance matrices for model components. Also, in the case of continuation problems, the relationship between the two sets of eigenvectors which appear in the theory of generalized inverse matrices is made clear and is quite enlightening.

## Keywords

Potential Field Magnetic Anomaly Null Space Helmholtz Equation Inverse Method

## References

1. Backus, G.E., Determination of the external geomagnetic field from intensity measurements, Geophys.Res.Lett., 1, 21, 1974.Google Scholar
2. Backus, G.E., Non-uniqueness of the external geomagnetic field determined by surface intensity measurements, J.Geophys.Res., 75, 6339–6341, 1970.Google Scholar
3. Backus, G.E., Applications of a non-linear boundary-value problem for Laplace's equation to gravity and geomagnetic intensity surveys, Quart.J.Mech.Appl. Math., 21, 195–221, 1968.Google Scholar
4. Backus, G.E. and Gilbert, F., Uniqueness in the inversion of inaccurate gross Earth data, Phil.Trans.Roy.astr.Soc., A 266, 123–192, 1970.Google Scholar
5. Backus, G.E. and Gilbert F., The resolving power of gross Earth data, Geophys.J. Roy.astr.Soc., 16, 169–205, 1968.Google Scholar
6. Backus, G.E.and Gilbert F., Numerical applications of a formalism for geophysical inverse problems, Geophys.Roy.astr.Soc., 13, 247–276, 1967.Google Scholar
7. Bhattacharyya, B.K., Reduction and treatment of magnetic anomalies of crustal origin in satellite data, J.Geophys.Res., 82, 3379–3390, 1977.Google Scholar
8. Bjerhammar, A., Theory of errors and generalized matrix inverses, 420p, Elsevier, Amsterdam, 1973.Google Scholar
9. Courtillot, V., Sur L'analyse de certaines variations spatiales et temporelles du champ magnétique terrestre, Ph.D.thesis, Université Paris VII, L977.Google Scholar
10. Courtillot V. et Francheteau, J., Géothermie ch.40, in Traitd de Géophysique interne, vol.2, J. Coulomb et G. Jobert ed., 449–500, Masson, Paris, 1976.Google Scholar
11. Courtillot V., Ducruix, J. et Le Mouël J.L., Le prolongement d'un champ de potentiel d'un contour quelconque sur un contour horizontal, Ann.Géophys., 29, 361–366, 1973.Google Scholar
12. Ducruix J., Le Mouël, J.L. and Courtillot, V., Continuation of three dimensional potential fields measured on an uneven surface, Geophys.J.Roy.astr.Soc., 38, 299–314, 1974 a.Google Scholar
13. Ducruix J., Le Mouël, J.L. and Courtillot, V., Une méthode simple devaluation de la correction topographique dans les problèmes de flux de chaleur, C.R.A.S., B 278, 841–843, 1974b.Google Scholar
14. Gaposchkin, E.M., Earth's gravity field to the eighteenth degree and geocentric coordinates for L04 stations from satellite and terrestrial data, J.Geophys.Res., 79, 5377–5411, 1974.Google Scholar
15. Gaposchkin, E.M., and Lambeck, K., Earth's gravity field to the sixteenth degree and station coordinates from satellite and terrestrial data, J.Geophys.Res., 76, 4855–4883, 1970.Google Scholar
16. Gilbert, F., Ranking and winnowing gross Earth data for inversion and resolution, Geophys.J.Roy.astr.Soc., 23, 125–128, 1971.Google Scholar
17. Jackson, D.D., Interpretation of inaccurate, insufficient and inconsistent data, Geophys.J.Roy.astr.Soc., 28, 97–107, 1971.Google Scholar
18. Jobert, G., Perturbation du flux de chaleur dans la croûte terrestre due au relief, C.R.A.S., 250, 3209–3210, 1960.Google Scholar
19. Jordan, T.H. Estimation of the radial variation of seismic velocities and density in the Earth, thesis, Cal.Inst.Tech., 199 P., 1973.Google Scholar
20. Lanczos, C., Linear differential operators, D. Van Nostrand Co., London, 564pp., 1961.Google Scholar
21. Le Mouël, J.L., Courtillot, V. and Ducruix, J., A solution of some problems in potential theory, Geophys.J.Roy.astr.Soc., 42, 251–272, 1975.Google Scholar
22. Menvielle, M., Induction electromagnétique et anomalies de conductivity; exem ples des Pyrenees et du Maroc, doctorat de spécialité, Université P. et M. Curie, 1977.Google Scholar
23. Miller, S.P., The validity of the geological interpretations of marine magnetic anomalies, Geophys.J.Roy.astr.Soc., 50, 1–21, 1977.Google Scholar
24. Minster, J.B., Jordan, T.H., Molnar, P. and Haines, E., Numerical modeling of instantaneous plate tectonics, Geophys.J.Roy.astr.Soc., 36, 541–576, 1974.Google Scholar
25. Minster, J.F., Minster, J.B., Treuil, M., and Allègre, C.J., Systematic use of trace elements in igneous processes, Contrib.Mineral.Petrol., 1–29, 1977.Google Scholar
26. Parker, R.L., The inverse problem of electrical conductivity in the mantle, Geophys.J.Roy.astr.Soc., 22, 121–138, 1970.Google Scholar
27. Parker, R. L., Understanding inverse theory, Ann. Rev. Earth Planet. Sci., 5,35–64, 1977.Google Scholar
28. Parker, R.L., and Huestis, S.P., The inversion of magnetic anomalies in the presence of topography, J.Geophys.Res., 79, 1587–1593, 1974.Google Scholar
29. Parker, R.L.,and Klitgord, K.D., Magnetic upward continuation from an uneven track, Geophysics, 37, 662–668, 1972.Google Scholar
30. Polonskyi, A.M., The calculation of the anomalies δZ and δg above a curved observational surface, Isv.Earth Phys., 11, 77–82, 1966.Google Scholar
31. R C P 264 ( C N R S ), Bibliographie du problème inverse, Laboratoire de Physique mathématique, Université des Sciences et techniques du Languedoc, Montpel lier, 1972 and (revision) 1974.Google Scholar
32. Savinskii, I.D., Solution of an improperly posed problem in the continuation of a potential field to subjacent levels, Isv.Earth.Phys., 6, 72–92, 1967.Google Scholar
33. Solov'ev, O.A.; Analytic continuation of potential fields by iteration, Isv. Earth.Phys., 4, 92–93, 1967.Google Scholar
34. Strakhov, V.N., Analytic continuation of two-dimensional potential fields into a region in the lower half-plane, Isv.Earth.Phys., 11, 38–55, 1972.Google Scholar
35. Strakhov, V.N.and Devitsyn, V.M., Reduction of the observed values of potential fields to a single level, Isv.Eart.Phys., 4, 60–72, 1965.Google Scholar
36. Tsirul'skiy, A.V., The reduction of observed potential fields to a single level, Isv.Earth Phys., 3, 85–89, 1968.Google Scholar
37. Wiggins, R.A., The general linear inverse problem: implication of surface waves and free oscillations for Earth structure, Rev.Geophys.Space Phys., 10, 251–285, 1972.Google Scholar