Advertisement

Ray theoretical inverse methods in geophysics

  • B. L. N. Kennett
Part I: Fifteen Review Lectures on Applied Inverse Problems
Part of the Lecture Notes in Physics book series (LNP, volume 85)

Abstract

Inverse methods based on ray theory have received considerable development in geophysical applications. Methods now exist for the direct inversion of exact data and the generation of extremal bounds on a solution once the errors in the data are taken into account. Linearised inverse methods may also be used and allow a treatment of the resolution attainable from the observed data.

Keywords

Velocity Distribution Velocity Model Inverse Method Exact Data Velocity Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backus, G.E. & Gilbert, F., (1968)The resolving power of gross Earth data, Geophys. J. R., astr. Soc., 16, 169–205.Google Scholar
  2. Backus, G.E. & Gilbert, F., (1969) Constructing P-velocity models to fit restricted sets of travel-time data, Bull. Seis. Soc. Am., 59, 1407Google Scholar
  3. Backus, G.E. & Gilbert, F., (1970) Uniqueness in the inversion of inaccurate gross Earth data, Phil. Trans. Roy. Soc., A266, 123–192.Google Scholar
  4. Belonosova, A.V. & Alekseev, A.S., (1967) On a formulation of the inverse kinematic seismic problem for a two dimensional continuous inhomogeneous medium, in “Certain Methods and Algorithms for the Interpretation of Geophysical Data,” Nauka, Moscow.Google Scholar
  5. Bessonova, E.N., Fishman, V.M., Ryaboyi, V.Z. & Sitnikova, G.A., (1974) The tau method for the inversion of travel-times — I. Deep seismic sounding data, Geophys. J. R. astr. Soc., 36, 377–398.Google Scholar
  6. Bessonova, E.N., Fishman, V.M., Johnson, L.R., Shnirman, M.G. & Sitnikova, G.A., (1976) The tau method for the inversion of travel-times — II. Earthquake data,Geophys. J. R. astr. Soc., 46, 87–108.Google Scholar
  7. Gerver, M.L. & Markushevich, V., (1966) Determination of a seismic wave velocity from the travel-time curve, Geophys. J. R. astr. Soc., 11, 165–173.Google Scholar
  8. Herglotz, G., (1907) Über das Benndorfsche Problem der Fortpflanzungsgeshwindigkeit der Erdbebenstrahlen, Phys. Z., 8, 145–147.Google Scholar
  9. Johnson, L.E. & Gilbert, G., (1972) Inversion and inference for teleseismic ray data, in Methods in Computational Physics 12, ed. B.A. Bolt, 231–266.Google Scholar
  10. Kennett, B.L.N., (1976) A comparison of travel time inversions, Geophys. J.R. astr. Soc., 44, 517–536.Google Scholar
  11. McMechan, G.A. & Wiggins, R.A., (1972)Depth limits in body wave inversions, Geophys. J. R. astr. Soc., 28, 459Google Scholar
  12. Mohorovicic, A., (1910) Das Beben vom 8.10.1909, Jahrb. Meteorol. Obs. Zagreb für 1909, Band 9, Teil 4, Abschn. 1.Google Scholar
  13. Slichter, L.B., (1932) The theory of the interpretation of seismic travel-time curves in horizontal structures, Physics 3, 273–295.Google Scholar
  14. Wiechert, E., (1910)Bestimmung der weges der Erdbeb.enwellen im E erdinnern, I, Theoretisches,Phys. Z., 11, 294–304.Google Scholar
  15. Wiggins, R.A., McMechan, G.A. & Toksoz, M.N., (1973) Range of Earth structure non-uniqueness implied by body wave observations, Revs. Geophys. Sp. Phys., 11, 87–113.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • B. L. N. Kennett
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridge

Personalised recommendations