Statistical models of cell populations

  • D. Ramkrishna
Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 11)


Statistical models for the description of microbial population growth have been reviewed with emphasis on their features that make them useful for applications. Evidence is shown that the integrodifferential equations of population balance are solvable using approximate methods. Simulative techniques have been shown to be useful in dealing with growth situations for which the equations are not easily solved.

The statistical foundation of segregated models has been presented identifying situations, where the deterministic segregated models would be adequate. The mathematical framework required for dealing with small populations in which random behavior becomes important is developed in detail.

An age distribution model is presented, which accounts for the correlation of life spans of sister cells in a population. This model contains the machinery required to incorporate correlated behavior of sister cells in general. It is shown that the future of more realistic segregated models, which can describe growth situations more general than repetitive growth, lies in the development of models similar to the age distribution model mentioned above.


Product Density Sister Cell Population Balance Equation Correlate Behavior Transition Probability Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




Age of a cell randomly selected from the population


Typical value of A

German Symbols


Environmental concentration vector (m-dimensional)


Typical point in environmental concentration space


Rate of consumption of environmental substances


Substrate concentration




Product density of rth order


Probability density for C


Probability density for Z conditional on a knowledge of A


Probability density for Z conditional on a knowledge of S


Product density of order 1 for an “i-let”, defined in 4.1


Janossy density or Master density


Mass of cell selected at random from the population

\(\bar \dot M\)

Average mass-specific growth rate


Typical value of M


Total number of cells per unit volume of culture


Number density function


Partitioning function for physiological state


Probability distribution for N

\(\bar R\)

Biochemical reaction rate vector


Partitioning function for cell size


Number of “i-lets” per unit volume of culture


Size of a cell selected at random from the population

\(\bar \bar S\)

Average size-specific growth rate


Typical value of S






Physiological state vector (n-dimensional)


Typical point in physiological state space


Average growth rate of cell

Environmental concentration space


Infinitesimal volume in ℭ


Hypersurface in physiological state space defined by Eq. (17)


Infinitesimal surface on \(\mathfrak{S}_s\)


Physiological state space


Infinitesimal volume in \(\mathfrak{B}\)

Greek Symbols


Stoichiometric matrix for biochemical constituents of the cell


Stoichiometric matrix for environmental substances


Age-specific or size-specific transition probability


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Athreya, K. B., Ney, P. E.: Branching Processes. New York: Springer 1972Google Scholar
  2. 2.
    Tsuchiya, H. M., Fredrickson, A. G., Aris, R.: Advan. Chem. Eng. 6, 125 (1966)Google Scholar
  3. 3.
    Fredrickson, A. G., Ramkrishna, D., Tsuchiya, H. M.: Math. Biosci. 1, 327 (1967)CrossRefGoogle Scholar
  4. 4.
    Bharucha-Reid, A. T.: Elements of the Theory of Markov Processes and their Applications. New York: McGraw-Hill 1960Google Scholar
  5. 5.
    Aris, R.: Vectors, Tensors and the Basic Equations of Fluid Mechanics. New Jersey: Prentice-Hall 1962, pp. 85Google Scholar
  6. 6.
    Hulburt, H. M., Katz, S. L.: Chem. Eng. Sci. 19, 555 (1964)CrossRefGoogle Scholar
  7. 7.
    Foerster Von, H.: The Kinetics of Cellular Proliferation (F. Stohlman Ed.), pp. 382–407. New York: Grune & Stratton 1959Google Scholar
  8. 8.
    Perret, C. J.: J. Gen. Microbiol. 22, 589 (1960)Google Scholar
  9. 9.
    Bailey, J. E.: Structural Cellular Dynamics as an Aid to Improved Fermentation Processes. Proceedings of the Conference on Enzyme Technology and Renewable Resources, University of Virginia, Charlottesville, VA, May 19–21, 1976Google Scholar
  10. 10.
    Bailey, J. E., Fazel-Madjlessi, J., McQuitty, D. N., Lee, D., Oro, J. A.: Characterization of Bacterial Growth Using Flow Microfluorometry. Science 198, 1175 (1977)PubMedGoogle Scholar
  11. 11.
    Bailey, J. E., Fazel-Madjlessi, J., McQuitty, D. N., Lee, L. Y., Oro, J. A.: Measurement of Structured Microbial Population Dynamics by Flow Microfluorometry, A. I. Ch. E. Jl. 24, 510 (1978)Google Scholar
  12. 12.
    Trucco, E.: Bull. Math. Biophys. 27, 285 (1965)PubMedGoogle Scholar
  13. 13.
    Trucco, E.: Bull. Math. Biophys. 27, 449 (1965)PubMedGoogle Scholar
  14. 14.
    Aris, R., Amundson, N. R.: Mathematical Methods in Chemical Engineering. New Jersey: Prentice Hall 1973Google Scholar
  15. 15.
    Powell, E. O.: J. Gen. Microbiol. 15, 492 (1956)PubMedGoogle Scholar
  16. 16.
    Harris, T. E.: The Theory of Branching Processes. Berlin/Göttingen/Heidelberg: Springer 1963Google Scholar
  17. 17.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics. Vol. 1. New York: Interscience 1953Google Scholar
  18. 18.
    Eakman, J. M., Fredrickson, A. G., Tsuchiya, H. M.: Chem. Eng. Prog. Symp. Series, No. 69. 62, 37 (1966)Google Scholar
  19. 19.
    Bertalanffy, L. von: Human Biol. 10, 280 (1938)Google Scholar
  20. 20.
    Bertalanffy, L. von: Theoretische Biologie. Berlin-Zehlendorf: Verlag von Gebrüder Borntraeger 1942Google Scholar
  21. 21.
    Subramanian, G., Ramkrishna, D.: Math. Biosci. 10, 1 (1971)CrossRefGoogle Scholar
  22. 22.
    Hulburt, H. M., Katz, S. L.: Chem. Eng. Sci. 19, 555 (1964)CrossRefGoogle Scholar
  23. 23.
    Ramkrishna, D.: Chem. Eng. Sci. 26, 1134 (1971)CrossRefGoogle Scholar
  24. 24.
    Finlayson, B.: The Method of Weighted Residuals. New York: Academic Press 1972Google Scholar
  25. 25.
    Subramanian, G., Ramkrishna, D., Fredrickson, A. G., Tsuchiya, H. M.: Bull. Math. Biophys. 32, 521 (1970)PubMedGoogle Scholar
  26. 26.
    Hulburt, H., Akiyama, X: Ind. Eng. Chem. Fund. 8, 319 (1969)CrossRefGoogle Scholar
  27. 27.
    Ramkrishna, D.: Chem. Eng. Sci. 28, 1362 (1973)CrossRefGoogle Scholar
  28. 28.
    Singh, P. N., Ramkrishna, D.: Computers and Chemical Eng. 1, 23 (1977)CrossRefGoogle Scholar
  29. 29.
    Singh, P. N., Ramkrishna, D.: J. Colloid Interface Sci. 53, 214 (1975)CrossRefGoogle Scholar
  30. 30.
    Kendall, D. G.: J. Ray. Stat. Soc, Ser. B 12, 116 (1950)Google Scholar
  31. 31.
    Moshman, J.: Random Number Generation in Mathematical Models for Digital Computers. A. Ralston, H. S. Wilf (Eds.), Vol. II, pp. 249–284. New York: Wiley 1967Google Scholar
  32. 32.
    Newman, T. G., Odell, P. L.: Generation of Random Variates. Grissom's Statistical Monographs. L. N. Stewart (Ed.). New York: Hafner 1971Google Scholar
  33. 33.
    Shah, B. H., Borwanker, J. D., Ramkrishna, D.: Math. Biosci. 31, 1 (1976)CrossRefGoogle Scholar
  34. 34.
    Koch, A. L., Schaechter, M.: J. Gen. Microbiol. 29, 435 (1962)PubMedGoogle Scholar
  35. 35.
    Eisen, M., Schiller, J.: J. Theor. Biol. 66, 799 (1977)CrossRefPubMedGoogle Scholar
  36. 36.
    Rahn, O.: J. Gen. Physiol. 15, 257 (1932)CrossRefGoogle Scholar
  37. 37.
    Ward, H. M.: Proc. Royal Soc. 58, 265 (1895)Google Scholar
  38. 38.
    Bayne-Jones, S., Adolph, E. F.: J. Cell Comp. Physiol. 1, 389 (1932)CrossRefGoogle Scholar
  39. 39.
    Collins, J. F., Richmond, M. H.: J. Gen. Microbiol. 28, 15 (1962)PubMedGoogle Scholar
  40. 40.
    Ramkrishna, D., Fredrickson, A. G., Tsuchiya, H. M.: Bull. Math. Biophys. 30, 319 (1968)Google Scholar
  41. 41.
    Harvey, R. J., Marr, A. G., Painter, P. R.: J. Bacteriol. 93, 605 (1967)PubMedGoogle Scholar
  42. 42.
    Collins, J. F.: J. Gen. Microbiol. 34, 363 (1964)PubMedGoogle Scholar
  43. 43.
    Schaechter, M., Williamson, J. P., Hood, J. R. (Jr.), Koch, A. L.: J. Gen. Microbiol. 29, 421 (1962)PubMedGoogle Scholar
  44. 44.
    Powell, E. O.: J. Gen. Microbiol. 37, 231 (1964)PubMedGoogle Scholar
  45. 45.
    Koch, A. L.,: J. Gen. Microbiol. 43, 1 (1966)PubMedGoogle Scholar
  46. 46.
    Painter, P. R., Marr, A. G.: J. Gen. Microbiol. 48, 155 (1967)Google Scholar
  47. 47.
    Powell, E. O.: J. Gen. Microbiol. 58, 141 (1969)PubMedGoogle Scholar
  48. 48.
    Srinivasan, S. K.: Stochastic Theory and Cascade Processes. New York: Elsevier 1969Google Scholar
  49. 49.
    Ramkrishna, D., Borwanker, J. D.: Chem. Eng. Sci. 28, 1423 (1973)CrossRefGoogle Scholar
  50. 50.
    Ramkrishna, D., Borwanker, J. D.: Chem. Eng. Sci. 29, 1711 (1974)CrossRefGoogle Scholar
  51. 51.
    Ramkrishna, D.: Statistical Foundation of Segregated Models of Cell Populations. Paper No. 436 presented at the 70th Annual Meeting of the A. I. Ch. E., New York, November 1977Google Scholar
  52. 52.
    Janossy, L.: Proc. Royal Soc. Acad. Ser. A 53, 181 (1950)Google Scholar
  53. 53.
    Ramakrishnan, A.: Probability and Stochastic Processes. Handbuch der Physik. S. Füigge (Ed.), Vol. 3, p. 524. Berlin: Springer 1959Google Scholar
  54. 54.
    Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.: M. Abramowitz, J. A. Stegun (Eds.) N. B. S. Appl. Math. Series 55,1964Google Scholar
  55. 55.
    Taylor, A. E.: Advanced Calculus, pp. 227–228. Boston: Ginn & Co. 1955Google Scholar
  56. 56.
    Powell, E. O.: J. Gen. Microbiol. 18, 382 (1958)PubMedGoogle Scholar
  57. 57.
    Kubitschek, H. E.: Exp. Call Res. 26, 439 (1962)CrossRefGoogle Scholar
  58. 58.
    Crump, K. S., Mode, C. J.: J. Appl. Prob. 6, 205 (1969)Google Scholar
  59. 59.
    Mode, C. J.: Multitype Branching Processes, New York: Elsevier 1971Google Scholar
  60. 60.
    Aiba, S., Endo, I.: A. I. Ch. E. Jl. 17, 608 (1971)Google Scholar
  61. 61.
    Kothari, I. R., Martin, G. C, Reilly, R. J., Eakman, J. M.: Biotechn. & Bioeng. 14, 915 (1972)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • D. Ramkrishna
    • 1
  1. 1.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations