Some applications of algebraic semantics

  • Irène Guessarian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 64)


We prove that the algebraic semantics of program schemes — besides of providing an adequate semantics equivalent to the fixpoint one — applies very naturally to various domains such as proofs of program properties, simplifications of programs or more generally equivalences of programs and comparison of computation rules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    A. AHO, J. ULLMAN, The theory of parsing, translation and compiling, Prentice Hall, London (1973)Google Scholar
  2. /2/.
    A. ARNOLD, M. DAUCHET, Transductions de forêts reconnaissables monadiques, forêts corégulières, R.A.I.R.O., Vol. 10, no3 (1976), 5–28Google Scholar
  3. /3/.
    G. BIRKHOFF, Lattice theory, AMS 3rd edition, New York (1967)Google Scholar
  4. /4/.
    B. COURCELLE, I. GUESSARIAN, On some classes of interpretations, IRIA Report no253 (1977)Google Scholar
  5. /5/.
    B. COURCELLE, I. GUESSARIAN, M. NIVAT, The algebraic semanties of recursive program schemes, in preparationGoogle Scholar
  6. /6/.
    P. DOWNEY, R. SETHI, Correct computation rules for recursive languages, SIAM J. Comp., Vol.5,no3 (1976), 378–401CrossRefGoogle Scholar
  7. /7/.
    J. ENGELFRIET, Some remarks on classes of macro-languages, Coll. "Les arbres en algèbre et programmation", Lille Univ. (1976)Google Scholar
  8. /8/.
    I. GUESSARIAN, Schémas récursifs polyadiques: équivalences et classe d'interprétations, Thèse d'Etat, Univ. PARIS 7, Paris (1975)Google Scholar
  9. /9/.
    J. GOGUEN, J. THATCHER, E. WAGNER, J. WRIGHT, Some fundamentals of order-algebraic semantics, MFCS 76, Lecture Notes in Computer Science no45, A. Mazurkiewicz Ed., Springer-Verlag (1976), 153–168Google Scholar
  10. /10/.
    I. IANOV, The logical schemes of algorithms, in problems of Cybernetics, Pergamon Press, London (1960), 82–140Google Scholar
  11. /11/.
    K. INDERMARK, Schemes with recursion on higher types, MFCS 76, Lect. Notes in Comp. Sc. no45, A. Mazurkiewicz Ed., Springer-Verlag (1976), 352–358Google Scholar
  12. /12/.
    R. MILNER, Models of LCF, Stanford A.I. Lab. Memo. AIM/CS 332, Stanford (1973)Google Scholar
  13. /13/.
    J. MORRIS, Another recursion induction principle, Com. ACM, Vol. 14 (1971), 351–354CrossRefGoogle Scholar
  14. /14/.
    M. NIVAT, On the interpretation of recursive polyadic program schemes, Symposia Mathematica, Vol. 15, Rome (1975)Google Scholar
  15. /15/.
    D. SCOTT, C. STRACHEY, Toward a mathematical semantics for computer languages, Technical Monograph PRG-6, Oxford Univ. (1971)Google Scholar
  16. /16/.
    J. VUILLEMIN, Syntaxe, sémantique et axiomatique d'un langage de programmation simple, Thèse d'état, Paris (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Irène Guessarian
    • 1
  1. 1.CNRS — Université Paris 7Paris Cédex 05

Personalised recommendations