Dynamic theories of real and complex numbers

  • M. Grabowski
  • A. Kreczmar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 64)


Characteristic Zero Dynamic Logic Classical Quantifier Algorithmic Logic Algorithmic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Engeler E., Algorithmic properties of structures, Math.Sys.Theory 1 (1967), 183–195CrossRefGoogle Scholar
  2. [2]
    Harel D.,Meyer A.R.,Pratt V., Computability and Completeness in Logic of programs, MIT reports (1977)Google Scholar
  3. [3]
    Kfoury D., Comparing algebraic structures up to algorithmic equivalences, Proc. 1st Coll.Aut.Lang.Prog. ed.Nivat North Holland Pub. (1972)Google Scholar
  4. [4]
    Kreczmar A., The set of all tautologies of algorithmic logic is hyperarithmetical, Bull.Acad.Pol.Sc.Ser.Math.Astr.Phys. 19(1971) 781–783Google Scholar
  5. [5]
    Kreczmar A., Degree of recursive unsolvability of algorithmic logic, ibid. 20(1972) 615–618Google Scholar
  6. [6]
    Kreczmar A., Programmability in fields, Fund.Infor. 1 (1977) 195–230Google Scholar
  7. [7]
    Mirkowska G., On formalized systems of algorithmic logic, Bull.Acad.Pol.Sc.Ser.Math.Astr.Phys. 19(1971) 421–428Google Scholar
  8. [8]
    Mirkowska G., Model existance theorem in algorithmic logic with nondeterministic programs, Fund.Infor. (to appear)Google Scholar
  9. [9]
    Mostowski A., Concerning the problem of axiomatizability of the field of real numbers in the weak second order logic, Essays on Found. (1961)Google Scholar
  10. [10]
    Rice H.G., Recursive real numbers, Proc.Amer.Math.Soc. 5 (1954) 784–791Google Scholar
  11. [11]
    Rogers H.Jr., Theory of recursive functions and effective computability, McGraw-Hill (1967)Google Scholar
  12. [12]
    Tarski A., A decision method for elementary algebra and geometry, Berckeley (1951)Google Scholar
  13. [13]
    Tarski A., The concept of truth in formalized languages, Logic, Semantics, Metamathematics, Clarendon Press, Oxford (1956)Google Scholar
  14. [14]
    Vaught R.L., Some aspects of the theory of models, Amer.Math.Monthly 80,6 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • M. Grabowski
    • 1
  • A. Kreczmar
    • 1
  1. 1.Department of MathematicsWarsaw UniversityPoland

Personalised recommendations