The connection between modal logic and algorithmic logics

  • P. van Emde Boas
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 64)


We investigate the connection between modal logic and the formal systems recently introduced for arguing about programs. The link is based on the common use of Kripke semantics. The bearing for semantics of some recent results in modal logic is explained. Finally we describe the possibilities to use intesional logic for the semantics of assignments.


Modal Logic Propositional Logic Propositional Variable Dynamic Logic Modal Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Bakker, J.W. & W.P. de Roever. A calculus for recursive program schemes, in M. Nivat, (ed.) Proc. ICALP 1 (Versailles 1972), pp 167–196. North Holl. Publ. Co. 1973, Amsterdam.Google Scholar
  2. 2.
    de Bakker, J.W. Correctness proofs for assignment statements, Rep. IW 55/76, Mathematical Centre, 1976 Amsterdam.Google Scholar
  3. 3.
    Banachowski, L. e.a. An introduction to Algorithmic Logic; Mathematical investigations in the theory of programs, in A. Mazurkiewitcz & Z. Pawlak (eds.), Mathematical foundations of Computer Science, Banach Centre Publ. 1977 Warsaw.Google Scholar
  4. 4.
    van Benthem, J.F.A. A note on modal formulae and relational properties, J.S.L. 40 1975 pp 85–88.Google Scholar
  5. 5.
    Blok, W.J. The lattice of modal logics. An algebraic investigation, Rep 77-15 Dept. of Mathematics Univ. of Amsterdam 1977.Google Scholar
  6. 6.
    Constable, R.L. On the theory of programming logics, Proc. ACM STOC 9 1977 pp 269–285.Google Scholar
  7. 7.
    Donahue, J.E. Locations considered Unnecessary, Acta Informatica 8 1977 pp 221–242.CrossRefGoogle Scholar
  8. 8.
    Frege, G. Uber Sinn und Bedeutung Zeitschrift für Philosophie und Philosophische Kritik (N.S.) 100 1892, pp 25–50. Transl.: On sense and Reference Translations from the writings of Gottlob Frege, P. Geach & M. Black (eds.), Basil Blackwell 1952 Oxford.Google Scholar
  9. 9.
    Gallin, D. Intensional and higher order Modal logic, North. Holl. Publ. Co. 1975 Amsterdam.Google Scholar
  10. 10.
    Goldblatt, R.I. & S.K. Thomason Axiomatic classes in propositional modal logic in J. Crossley (ed.) Algebra and logic, Proc. Autsr. Math. Summer Inst. 1974. Springer LNM 450 1975 Berlin.Google Scholar
  11. 11.
    Griess, D. Assignment to subscripted variables Rep TR 77-305 Dept. Comp. Sci. Cornell Univ. Ithaca NY. 1977.Google Scholar
  12. 12.
    Harel, D. On the correctness of Regular deterministic programs. A unifying survey, preprint MIT Dec 1977 Cambridge Mass.Google Scholar
  13. 13.
    Harel, D. Arithmetical completeness in logics of programs in Proc. ICALP 5 (Udine 1978), Springer LCS (to appear).Google Scholar
  14. 14.
    Harel, D., A. Meyer & V.R. Pratt Computability and completeness in logics of programs Proc. ACM STOC 9 1977 pp. 261–268.Google Scholar
  15. 15.
    Hoare, C.A.R. & N. Wirth, An axiomatic definition of the programming language PASCAL, Acta Informatica 2 1973 pp. 335–355.CrossRefGoogle Scholar
  16. 16.
    Hughes, G.E. & M.J. Cresswell, An introduction to Modal logic, Methuen & Co. 1968 London.Google Scholar
  17. 17.
    Janssen, T.M.V. Compositionality and the form of the rules in Montague grammar Proc. 2nd Amsterdam Coll. on Montague grammar and related topics. Dept. of philosophy, Univ. of Amsterdam (to appear).Google Scholar
  18. 18.
    Janssen, T.M.V. & P. van Emde Boas, On the proper treatment of referencing, dereferencing and assignment in A. Salomaa & M. Steinby (eds.) Proc. ICALP 4 (Turku 1977), Springer LCS 52 pp 282–300.Google Scholar
  19. 19.
    Janssen, T.M.V. & P. van Emde Boas, The expressive power of intensional logic in the semantics of programming languages, in J. Gruska (ed.) Proc. MFCS 6 (Tatranska Lomnica 1977), Springer LCS 53 pp 303–311.Google Scholar
  20. 20.
    Kripke, S. Semantical considerations on Modal logic Acta Philosophica Fennica 16 1963 pp 83–94. Repr. in [24].Google Scholar
  21. 21.
    Kröger, F. LAR: A logic of Algorithmic Reasoning, Acta Informatica 8 1977 pp 243–266.CrossRefGoogle Scholar
  22. 22.
    Lemmon, E.J. Algebraic semantics for modal logic I & II, J.S.L. 31 1966 pp 46–65 & 196–218.Google Scholar
  23. 23.
    Lewis, C.I. & C.H. Langford Symbolic logic Dover 1932 New York.Google Scholar
  24. 24.
    Linski, L., Reference and Modality, Oxford univ. press 1971 Oxford.Google Scholar
  25. 25.
    Manna, Z. & R. Waldiger Is "sometimes" sometimes better than "always", Comm. A.C.M. 21 1978 pp 159–171.Google Scholar
  26. 26.
    Montague, R. The proper treatment of quantification in ordinary Engish, in J. Hintikka, J. Moravcsik & P. Suppes (eds.) Approaches to natural language, Reidel 1973 Dordrecht. Repr. in R.H. Thomason (ed.) Formal Philosophy, Selected papers of Richard Montague, Yale Univ. press 1974 New Haven & London.Google Scholar
  27. 27.
    Pnuelli, A. The temporal logic of programs Proc. IEEE FOCS 18 1977 pp 46–57.Google Scholar
  28. 28.
    Pratt, V.R. Semantical considerations on Floyd-Hoare logic Proc. IEEE FOCS 17 1976 pp 109–121.Google Scholar
  29. 29.
    Quine, W.V. Word and Object, the MIT press 1960 Cambridge Mass.Google Scholar
  30. 30.
    Scott, D. & C. Strachey Towards a mathematical semantics for computer languages in J. Fox (ed.) Proc. Symp. on Computers and Automata, Polytechnic Inst. Brooklyn 1971 pp 19–46.Google Scholar
  31. 31.
    Strachey, C. Towards a Formal semantics in T.B. Steel (ed.) Formal language description languages for computer programming, North. Holl. Publ. Co. 1966 Amsterdam pp 198–220.Google Scholar
  32. 32.
    van Wijngaarden, A. e.a. (eds.) Revised report on the algorithmic language ALGOL 68 Tract MCT 50 Mathematical Centre 1976 Amsterdam.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • P. van Emde Boas
    • 1
  1. 1.Dept. of Mathematics ITW/VPWUniversity of AmsterdamNetherlands

Personalised recommendations