Optical measurement of membrane potential

  • Lawrence B. Cohen
  • Brian M. Salzberg
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 83)


Optical measurement of membrane potential is a new tool for physiologists and has already found many applications. However, the number of possible pitfalls is alarming, particularly in situations where comparison with electrode measurements is impossible. Exhaustive and elaborate controls are clearly necessary; and yet they never provide complete assurance that an optical signal represents a change in membrane potential. In our opinion, the use of redistribution signals, which are slower, and thus more likely to represent to secondary effects of changes in membrane potential, and require permeant dyes with access to the internal millieu, may be more hazardous than the use of either fast or intrinsic signals. However, the larger size of the redistribution signals has endowed them with obvious appeal. If more sensitive fast signals can be found, the use of this kind of signal would be facilitated.

Even though optical methods for measuring membrane potential were introduced relatively recently, their uses have multiplied rapidly and will doubtless continue to proliferate. It seems likely that, in several instances, optical techniques will prove to be quite powerful and, used with caution, should provide information unobtainable by other methods.


Membrane Potential Fluorescence Change Giant Axon Ehrlich Ascites Tumor Cell Purple Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åkerman, K.E.O., Saris, N.-E.L.: Stacking of safranine in liposomes during valinomycin-induced efflux of potassium ions. Biochim. Biophys. Acta 426, 624–629 (1976)Google Scholar
  2. Åkerman, K.E.O., Wikström, M.K.F.: Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 68, 191–197 (1976)PubMedGoogle Scholar
  3. Arvanitaki, A., Chalazonitis, N.: Excitatory and inhibitory processes initiated by light and infra-red radiations in single identifiable nerve cells (giant ganglion cells of Aplysia). In: Nervous Inhibition. E. Florey (ed.). New York: Pergamon Press 1961Google Scholar
  4. Ashkenazi, I.E., Hartman, H., Strulovitz, B., Dar, O.: Activity rhythms of enzymes in human red blood cell suspensions. J. Interdiscipl. Cycle Res. 6, 291–301 (1975)Google Scholar
  5. Azzi, A.: Redistribution of the electrical charge of the mitochondrial membrane during energy conservation. Biochem. Biophys. Res. Commun. 37, 254–260 (1969)PubMedGoogle Scholar
  6. Azzi, A.: The application of fluorescent probes in membrane studies. Q. Rev. Biophys. 8, 237–316 (1975)Google Scholar
  7. Azzi, A., Chance, B., Radda, G.K., Lee, C.P.: A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc. Natl. Acad. Sci. USA 62, 612–619 (1969)Google Scholar
  8. Azzi, A., Gherardini, P., Santato, M.: Fluorochrome interaction with the mitochondrial membrane. The effect of energy conservation. J. Biol. Chem. 246, 2035–2042 (1971)Google Scholar
  9. Azzi, A., Santato, M.: Energy dependent interaction of oligomycin and dicyclohexyl-carbodiimide with the mitochondrial membrane. FEBS Lett. 7, 135–138 (1970)Google Scholar
  10. Bakeeva, L.E., Grinius, L.L., Jasaitis, A.A., Kuliene, V.V., Levitzky, D.O., Liberman, E.A., Severina, I.I., Skulachev, V.P.: Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim. Biophys. Acta 216, 13–21 (1970)PubMedGoogle Scholar
  11. Baker, P.F., Rink, T.J.: Catecholamine release from bovine adrenal medulla in response to maintained depolarization. J. Physiol. 253, 593–620 (1975)Google Scholar
  12. Barry, W.H., Carnay, L.D.: Changes in light scattered by striated muscle during excitation-contraction coupling. Am. J. Physiol. 217, 1425–1430 (1969)Google Scholar
  13. Baylor, S.M., Oetliker, H.: Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from the sarcoplasmic reticulum. Nature 253, 97–101 (1975)Google Scholar
  14. Baylor, S.M., Oetliker, H.: A large birefringence signal preceding contraction in single twitch fibres of the frog. J. Physiol. 264, 141–162 (1977a)Google Scholar
  15. Baylor, S.M., Oetliker, H.: The optical properties of birefringence signals from single muscle fibres. J. Physiol. 264, 163–198 (1977b)Google Scholar
  16. Baylor, S.M., Oetliker, H.: Birefringence signals from surface and T-system membranes of frog single muscle fibres. J. Physiol. 264, 199–213 (1977c)Google Scholar
  17. Bezanilla, F., Horowicz, P.: Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile blue A. J. Physiol. 246, 709–735 (1975)Google Scholar
  18. Blaurock, A.E., Stoeckenius, W.: Structure of the purple membrane. Nature (New Biol.) 233, 152–155 (1971)PubMedGoogle Scholar
  19. Blaustein, M.P., Goldring, J.M.: Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: Evidence that synaptosomes have potassium diffusion potentials. J. Physiol. 247, 589–615 (1975)Google Scholar
  20. Bogomolni, R., Stoeckenius, W.: Bacteriorhodopsin: photosignal transduction and photoenergy transduction in different biological systems. J. Supramol. Struct. 2, 775–780 (1974)Google Scholar
  21. Braddick, H.J.J.: Photoelectric photometry. Rep. Prog. Physics 23, 154–175 (1960)Google Scholar
  22. Bramhall, J.S., Morgan, J.I., Perris, A.D., Britten, A.Z.: The use of a fluorescent probe to monitor alterations in trans-membrane potential in single cell suspensions. Biochem. Biophys. Res. Commun. 72, 654–662 (1976)Google Scholar
  23. Brewer, G.J.: The state of energization of the membrane of Escherichia coli as affected by physiological conditions and colicin K. Biochemistry 15, 1387–1392 (1976)Google Scholar
  24. Brocklehurst, J.R., Freedman, R.B., Hancock, D.J., Radda, G.K.: Membrane studies with polarity-dependent and excimer-forming fluorescent probes. Biochem. J. 116, 721–731 (1970)PubMedGoogle Scholar
  25. Brown, J.E., Cohen, L.B., De Weer, P., Pinto, L.H., Ross, W.N., Salzberg, B.M.: Rapid changes of intracellular free calcium concentration; detection by metallochromic indicator dyes in squid giant axon. Biophys. J. 15, 1155–1160 (1975)Google Scholar
  26. Callahan, T.J., Hoffman, J.F.: Membrane potentials in human red blood cells due to proton gradients. Biophys. J. 16, 169a (1976)Google Scholar
  27. Carbone, E., Conti, F., Fioravanti, R.: Fluorescence polarization studies of squid giant axons stained with N-methylanilinonaphthalenesulfonates. Biophys. Struct. Mech. 1, 221–237 (1975)Google Scholar
  28. Carbone, E., Malerba, F., Poli, M.: Orientation and rotational freedom of fluorescence probes in lecithin bilayers. Biophys. Struct. Mech. 2, 251–267 (1976)Google Scholar
  29. Carnay, L.D., Barry, W.H.: Turbidity, birefringence, and fluorescence changes in skeletal muscle coincident with the action potential. Science 165, 608–609 (1969)Google Scholar
  30. Chance, B., Baltscheffsky, M., Vanderkooi, J., Cheng, W.: Localized and delocalized potentials in biological membranes. In: Perspectives in Membrane Biology. Estrada, S., Gitter, C. (eds.). New York: Academic Press 1974, pp. 329–369Google Scholar
  31. Chance, B., Lee, C.P.: Comparison of fluorescence probe and light-scattering readout of structural states of mitochondrial membrane fragments. FEBS Lett. 4, 181–184 (1969)Google Scholar
  32. Chance, B., Mayevsky, A., Smith, J.: Localized and delocalized potentials in the rat brain cortex. Neurosci. Abstr. 2/I, 133 (1976)Google Scholar
  33. Chance, B., Pring, M., Azzi, A., Lee, C.P., Mela, L.: Kinetics of membrane transitions. Biophys. J. 9, 90a (1969)Google Scholar
  34. Chance, B., Williams, G.R.: Respiratory enzymes in oxidative phosphorylation. III. The steady state. J. Biol. Chem. 217, 409–427 (1955)PubMedGoogle Scholar
  35. Cohen, L.B.: Changes in neuron structure during action potential propagation and synaptic transmission. Physiol. Rev. 53, 373–418 (1973)PubMedGoogle Scholar
  36. Cohen, L.B., Hille, B., Keynes, R.D.: Changes in axon birefringence during the action potential. J. Physiol. 211, 495–515 (1970)PubMedGoogle Scholar
  37. Cohen, L.B., Hille, B., Keynes, R.D., Landowne, D., Rojas, E.: Analysis of the potential-dependent changes in optical retardation in the squid giant axon. J. Physiol. 218, 205–237 (1971)Google Scholar
  38. Cohen, L.B., Hille, B., Keynes, R.D.: Light scattering and birefringence changes during nerve activity. Nature 218, 438–441 (1968)PubMedGoogle Scholar
  39. Cohen, L.B., Keynes, R.D., Hille, B.: Light scattering and birefringence changes during activity in the electric organ of Electrophorus electricus, J. Physiol. 203, 489–509 (1969)Google Scholar
  40. Cohen, L.B., Keynes, R.D., Landowne, D.: Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components. J. Physiol. 224, 701–725 (1972)Google Scholar
  41. Cohen, L.B., Landowne, D., Shrivastav, B.B., Ritchie, J.M.: Changes in fluorescence of squid axons during activity. Biol. Bull, Mar. Biol. Lab. Woods Hole 139, 418–419 (1970)Google Scholar
  42. Cohen, L.B., Salzberg, B.M., Davila, H.V., Ross, W.N., Landowne, D., Waggoner, A.S., Wang, C.H.: Changes in axon fluorescence during activity: molecular probes of membrane potential. J. Memb. Biol. 19, 1–36 (1974)Google Scholar
  43. Conti, F.: Fluorescent probes in nerve membranes. Ann. Rev. Biophys. Bioeng. 4, 287–310 (1975)Google Scholar
  44. Conti, F., Fioravanti, R., Malerba, F., Wanke, E.: A comparative analysis of extrinsic fluorescence in nerve membranes and lipid bilayers. Biophys. Struct. Mech. 1, 27–45 (1974)Google Scholar
  45. Conti, F., Tasaki, I.: Changes in extrinsic fluorescence in squid axons during voltage-clamp. Science 169, 1322–1324 (1970)PubMedGoogle Scholar
  46. Conti, F., Tasaki, I., Wanke, E.: Fluorescence signals in ANS-stained squid axons during voltage clamp. Biophys. 8, 58–70 (1971)Google Scholar
  47. Costantin, L.L.: The role of sodium current in the radial spread of contraction in frog muscle fibres. J. Gen. Physiol. 55, 703–715 (1970)Google Scholar
  48. Davila, H.V., Cohen, L.B., Salzberg, B.M., Shrivastav, B.B.: Changes in ANS and TNS fluorescence in giant axons from Loligo. J. Memb. Biol. 15, 29–46 (1974)Google Scholar
  49. Davila, H.V., Cohen, L.B., Waggoner, A.S.: Changes in axon fluorescence during activity. Biophys. J. 12, 124a (1972)Google Scholar
  50. Davila, H.V., Salzberg, B.M., Cohen, L.B., Waggoner, A.S.: A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nature (New Biol.) 241, 159–160 (1973)Google Scholar
  51. Doughty, M.J., Dodd, G.H.: Fluorometric determination of the resting potential changes associated with the chemotactic response in Paramecium. Biochim. Biophys. Acta 451, 592–603 (1976)Google Scholar
  52. Douglas, W.W., Kanno, T., Sampson, S.R.: Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizing effect of acetylcholine. J. Physiol. 191, 107–121 (1967)Google Scholar
  53. Drabkin, D.L., Singer, R.B.: Spectrophotometric studies. VI. A study of the absorption spectra of non-hemolyzed erythrocytes and of scattering of light by suspensions of particles, with a note upon the spectrophotometric determination of pH within the erythrocyte. J. Biol. Chem. 129, 739–757 (1939)Google Scholar
  54. Dragsten, P.R., Webb, W.W.: Mechanism of membrane potential sensitivity of mero-cyanine 540. Biophys. J. 17, 215a (1977)Google Scholar
  55. Ebashi, S., Endo, M., Ohtsuki, I.: Control of muscle contraction. Q. Rev. Biophys. 2, 351–384 (1969)PubMedGoogle Scholar
  56. Eisenberg, R.S., Howell, J.N., Vaughan, P.C.: The maintenance of resting potentials in glycerol-treated muscle fibres. J. Physiol. 215, 95–102 (1971)Google Scholar
  57. Emrich, H.M., Junge, W., Witt, H.T.: Further evidence for an optical response of chloroplast bulk pigments to a light induced electric field in photosynthesis. Z. Natur-forsch. 24b, 1144–1146 (1969)Google Scholar
  58. Ferguson, S.J., Lloyd, W.J., Radda, G.K.: On the nature of the energized state of submitochondrial particles; investigations with N-aryl napthalene sulfonate probes. Biochim. Biophys. Acta 423, 174–188 (1976)Google Scholar
  59. Fortes, P.A.G., Hoffman, J.F.: Interaction of fluorescent probes with anion permeability pathways of human red cells. J. Memb. Biol. 16, 79–100 (1974)Google Scholar
  60. Fowler, C.F., Kok, B.: Direct observation of a light-induced electric field in chloroplasts. Biochim. Biophys. Acta 357, 308–318 (1974)Google Scholar
  61. Franzini-Armstrong, C.: Studies of the triad. I. Structure of the junction in frog twitch fibres. J. Cell Biol. 47, 488–499 (1970)Google Scholar
  62. Freedman, J.C., Hoffman, J.F.: Donnan equilibria and membrane potentials in human red blood cells: A calibration of the fluorescent probe, diS-C3(5). Biophys. J. 17, 151a (1977)Google Scholar
  63. Fromherz, P.: A new method for investigation of lipid assemblies with a lipoid pH indicator in monomolecular films. Biochim. Biophys. Acta 323, 326–334 (1973)Google Scholar
  64. Fromherz, P., Masters, B.: Interfacial pH at electrically charged lipid monolayers investigated by the lipoid pH-indicator method. Biochim. Biophys. Acta 356, 270–275 (1974)Google Scholar
  65. Goldring, J.M., Blaustein, M.P.: Synaptosome membrane potential changes monitored with a fluorescent probe. Society for Neuroscience Sample Expanded Abstracts. Los Angeles: Brain Information Service 1973, pp. 14–15Google Scholar
  66. Greville, G.D.: A scrutiny of Mitchell's chemiosmotic hypothesis of respiratory chain and photosynthetic phosphorylation. Curr. Top. Bioenerg. 3, 1–78 (1969)Google Scholar
  67. Grinius, L.L., Jasaitis, A.A., Kadziauskas, Yu.P., Liberman, E.A., Skulachev, V.P., Topali, V.P., Tsofina, L.M., Vladimirova, M.A.: Conversion of biomembrane produced energy into electrical form. Biochim. Biophys. Acta 216, 1–12 (1970)PubMedGoogle Scholar
  68. Grinvald, A., Cohen, L.B.: Optical monitoring of activity in barnacle neurons in response to light stimulation of the median photoreceptors. Neurosci. Abstr. 3, 178 (1977)Google Scholar
  69. Grinvald, A., Salzberg, B.M., Cohen, L.B.: Simultaneous recording from several neurons in an invertebrate central nervous system. Nature 268, 140–142 (1977)Google Scholar
  70. Hartman, H., Ashkenazi, I., Epel, B.L.: Circadian changes in membrane properties of human red blood cells in vitro, as measured by a membrane probe. FEBS Lett. 67, 161–163 (1976)Google Scholar
  71. Haynes, D.H.: 1-Anilino-8-Naphthalenesulfonate: A fluorescent indicator of ion binding and electrostatic potential on the membrane surface. J. Memb. Biol. 17, 341–366 (1974)Google Scholar
  72. Haynes, D.H., Simkowitz, P.: 1-Anilino-8-naphthalenesulfonate: a fluorescent probe of ion and ionophore transport kinetics and transmembrane asymmetry. J. Memb. Biol. 33, 63–108 (1977)Google Scholar
  73. Hill, D.K.: The effect of stimulation on the opacity of a crustacean nerve trunk and its relation to fibre diameter. J. Physiol. 111, 283–303 (1950)Google Scholar
  74. Hill, D.K.: The effect of stimulation on the diffraction of light by striated muscle. J. Physiol. 119, 501–512 (1953)Google Scholar
  75. Hladky, S.B., Rink, T.J.: Potential difference and the distribution of ions across the human red blood cell membrane: A study of the mechanism by which the fluorescent cation diS-C3(5) reports the membrane potential. J. Physiol. 263, 287–319 (1976a)Google Scholar
  76. Hladky, S.B., Rink, T.J.: pH changes in human erythrocytes reported by 3,3′ dipropyl-thiadicarbocyanine, diS-C3(5). J. Physiol. 263, 213p–214p (1976b)Google Scholar
  77. Hodgkin, A.L., Horowicz, P.: Potassium contracturesin single muscle fibres. J. Physiol. 153, 386–403 (1960)PubMedGoogle Scholar
  78. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952)PubMedGoogle Scholar
  79. Hoffman, J.F., Laris, P.C.: Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. 239, 519–552 (1974)PubMedGoogle Scholar
  80. Hoffman, J.F., Lassen, U.V.: Plasma membrane potential in Amphiuma red cells. Abst. XXV Int. Congr. Physiol. Sci. Munich, 1971Google Scholar
  81. Home, W.C., Whitin, J.C., Simons, E.R.: Platelet membrane potential changes in response to thrombin stimulation of aggregation. Blood 51, 741–749 (1978)Google Scholar
  82. Illanes, A., von Muralt, A.: Fluorescence probe signals from excited heart muscle. Experientia 31, 711 (1975)Google Scholar
  83. Jackson, J.B., Crofts, A.R.: The high energy state in chromatophores from Rhodo-pseudomonas spheroides. FEBS Lett. 4, 185–189 (1969)PubMedGoogle Scholar
  84. Jackson, J.B., Crofts, A.R.: The kinetics of light induced carotenoid changes in Rhodo-pseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane. Eur. J. Biochem. 18, 120–130 (1971)PubMedGoogle Scholar
  85. Jasaitis, A.A., Kuliene, V.V., Skulachev, V.P.: Anilinonaphthalensulfonate fluorescence changes induced by non-enzymatic generation of membrane potential in mitochondria and submitochondrial particles. Biochim. Biophys. Acta 234, 177–181 (1971)PubMedGoogle Scholar
  86. Jöbsis, F.F., O'Connor, M.J.: Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25, 246–252 (1966)Google Scholar
  87. Johnstone, B.M.: Microelectrode penetration of ascites tumour cells. Nature 183, 411 (1959)Google Scholar
  88. Junge, W., Witt, H.T.: On the ion transport system of photosynthesis-investigations on a molecular level. Z. Naturforsch. 23b, 244–254 (1968)Google Scholar
  89. Kamino, K., Ogawa, M., Uyesaka, N., Inouye, A.: Membrane potential changes in isolated synaptic membrane ghosts monitores with merocyanine-540. Jap. J. Physiol. (1978) (in press)Google Scholar
  90. Kaplan, J.H., Passow, H.: Effects of phlorizin on net chloride movements across the valinomycin-treated erythrocyte membrane. J. Memb. Biol. 19, 179–194 (1974)Google Scholar
  91. Kashket, E.R., Wilson, T.H.: Protonmotive force in fermenting Streptococcus lactis 7962 in relation to sugar accumulation. Biochem. Biophys, Res. Commun. 59, 879–886 (1974)Google Scholar
  92. Kinnally, K.W., Tedeschi, H.: Phosphorylation without protonmotive force. FEBS Lett. 62, 41–46 (1976a)Google Scholar
  93. Kinnally, K.W., Tedeschi, H.: Phosphorylation without protonmotive force. Biophys. J. 16, 18a (1976b)Google Scholar
  94. Kinnally, K.W., Tedeschi, H.: Electrofluorimetric estimates of membrane potential in metabolizing mitochondria. Biophys. J. 17, 33a (1977)Google Scholar
  95. Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A.: The relationship between anion exchange and net anion flow across the human red blood cell membrane. J. Gen. Physiol. 69, 363–386 (1977)Google Scholar
  96. Kovacs, L., Schneider, M.F.: Increased optical transparency associated with excitation-contraction coupling in voltage-clamped cut skeletal muscle fibres. Nature 265, 556–560 (1977)Google Scholar
  97. Krasne, S.: Cyanine dye-induced electrical and fluorescence effects in neutral and negative bilayer membranes. Biophys. J. 17, 214a (1977)Google Scholar
  98. Landowne, D.: Changes in fluorescence of skeletal muscle stained with merocyanine associated with excitation-contraction coupling. J. Gen. Physiol. 64, 5a (1974)Google Scholar
  99. Laris, P.C., Bahr, D.P., Chaffee, R.R.J.: Membrane potential in mitochondrial preparations as measured by means of cyanine dye. Biochim. Biophys. Acta 376, 415–425 (1975)PubMedGoogle Scholar
  100. Laris, P.C., Pershadsingh, H.A.: Estimations of membrane potentials in Streptococcus faecalis by means of a fluorescent probe. Biochem. Biophys. Res. Commun. 57, 620–626 (1974)Google Scholar
  101. Laris, P.C., Pershadsingh, H.A., Johnstone, R.M.: Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye. Biochim. Biophys. Acta 436, 475–488 (1976)PubMedGoogle Scholar
  102. Lassen, U.V.: Membrane potential and membrane resistance in red cells. In: Oxygen affinity of hemoglobin and red cell acid base status. Roth, M., Astrup, P. (eds.). New York: Academic Press 1972, pp. 291–304Google Scholar
  103. Lassen, U.V., Nielsen, A.-M.T., Pape, L., Simonsen, L.O.: The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation. J. Memb. Biol. 6, 269–288 (1971)Google Scholar
  104. Lee, C.-P., Ernster, L.: The energy-linked nicotinamide nucleotide transhydrogenase reaction: its characteristics and its use as a tool for the study of oxidative phosphorylation. In: Regulation of Metabolic Processes in Mitochondria. Tager, J.M., Papa, S., Quagliariello, E., Slater, E.C. (eds.). Amsterdam: Elsevier 1966, pp. 218–234Google Scholar
  105. Levi, L.: Applied Optics: A Guide to Optical System Design. New York: John Wiley 1968, pp. 152–155Google Scholar
  106. Levin, S.V.: Structural changes of cell membranes. Leningrad: Izdatel'stuo “Nauka”, Leningrad Branch 1976Google Scholar
  107. Levin, S.V., Rozenthal, D.L., Komissarchik, Ya.Yu.: Structural changes in the axon membrane on excitation. Biofizika 13, 180–182 (1968)Google Scholar
  108. Mitchell, P.: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961)PubMedGoogle Scholar
  109. Mitchell, P.: Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Bodmin: Glynn Research 1966Google Scholar
  110. Mobley, B.A., Eisenberg, B.R.: Sizes of components in frog skeletal muscle measured by methods of stereology. J. Gen. Physiol. 66, 31–45 (1975)Google Scholar
  111. Montal, M., Chance, B., Lee, C.P., Azzi, A.: Effect of ion-transporting antibiotics on the energy-linked reactions of submitochondrial particles. Biochem. Biophys. Res. Commun. 34, 104–111 (1969)Google Scholar
  112. Morgan, J.I., Bramhall, J.S., Britten, A.Z., Perris, A.D.: Calcium and oestrogen interactions upon the rat thymic lymphocyte plasma membrane. Biochem. Biophys. Res. Commun. 72, 663–672 (1976)Google Scholar
  113. Morgan, J.I., Hall, A.K., Perris, A.D.: Requirements for divalent cations by hormonal mitogens and their interactions with sex steroids. Biochem. Biophys. Res. Commun. 66, 188–194 (1975)Google Scholar
  114. Naitoh, Y., Eckert, R.: Electrical properties of Paramecium caudatum: modification by bound and free cations. Z. Vergl. Physiol. 61, 427–472 (1968)Google Scholar
  115. Nakajima, S., Gilai, A., Dingeman, D.: Dye absorption changes in single muscle fibers: An application of an automatic balancing circuit. Pflügers Arch. 362, 285–287 (1976)Google Scholar
  116. Naparstek, A., Slayman, C.: Metabolism-dependent changes of membrane potential in Neurospora, tracked with an optical probe. Biophys. J. 16, 21a (1976)Google Scholar
  117. Oesterhelt, D., Stoeckenius, W.: Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature (New Biol.) 233, 149–152 (1971)Google Scholar
  118. Oetliker, H., Baylor, S.M., Chandler, W.K.: Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity. Nature 257, 693–696 (1975)Google Scholar
  119. Ohta, M., Narahashi, T., Keeler, R.F.: Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J. Pharmac. Exp. Ther. 184, 143–154 (1973)Google Scholar
  120. Packer, L., Donovan, M.P., Wrigglesworth, J.M.: Oscillations of 8-Anilinonaphthalen-1-sulfonic acid fluorescence in mitochondria. Biochem. Biophys. Res. Commun. 35, 832–838 (1969)PubMedGoogle Scholar
  121. Patrick, J., Valeur, B., Monnerie, L., Changeux, J.-P.: Changes in extrinsic fluorescence intensity of the electroplax membrane during electrical excitation. J. Memb. Biol. 5, 102–120 (1971)Google Scholar
  122. Peachey, L.D., The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J. Cell Biol. 25, No. 3, II, 209–231 (1965)Google Scholar
  123. Pick, U., Avron, M.: Measurement of transmembrane potentials in Rhodospirillum rubrum chromatophores with an oxacarbocyanine dye. Biochem. Biophys. Acta 440, 189–204 (1976)Google Scholar
  124. Podleski, T., Changeux, J.-P.: Effects associated with permeability change caused by gramicidin A in electroplax membrane. Nature 221, 541–545 (1969)Google Scholar
  125. Pooler, J.: Photodynamic alteration of sodium currents in lobster axons. J. Gen. Physiol. 60, 367–387 (1972)PubMedGoogle Scholar
  126. Radda, G.K.: The design and use of fluorescent probes for membrane studies. Curr. Top. Bioenerg. 4, 81–126 (1971)Google Scholar
  127. Renthal, R., Lanyi, J.K.: Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles. Biochemistry 15, 2136–2143 (1976)PubMedGoogle Scholar
  128. Ross, W.N., Reichardt, L.F.: Species-specific effects on the optical signals of voltage-sensitive dyes. J. Gen. Phys. 70, 15a–16a (1977)Google Scholar
  129. Ross, W.N., Salzberg, B.M., Cohen, L.B., Davila, H.V.: A large change in dye absorption during the action potential. Biophys. J. 14, 983–986 (1974)Google Scholar
  130. Ross, W.N., Salzberg, B.M., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S., Wang, C.H.: Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurement of membrane potential. J. Memb. Biol. 33, 141–183 (1977)Google Scholar
  131. Rottenberg, H.: The measurement of transmembrane electrochemical proton gradients. J. Bioenerg. 7, 61–74 (1975)PubMedGoogle Scholar
  132. Salama, G., Morad, M.: Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science 191, 485–487 (1976)Google Scholar
  133. Salama, G., Morad, M.: Use of fluorescent dyes to evaluate single sucrose gap voltage clamp technique in frog heart. Biophys. J. 17, 5a (1977)Google Scholar
  134. Salzberg, B.M., Davila, H.V., Cohen, L.B.: Optical recording of impulses in individual neurons of an invertebrate central nervous system. Nature 246, 508–509 (1973)Google Scholar
  135. Salzberg, B.M., Davila, H.V., Cohen, L.B., Waggoner, A.S.: A large change in axon fluorescence, potentially useful in the study of simple nervous system. Biol. Bull. Mar. Biol. Lab., Woods Hole 143, 475 (1972)Google Scholar
  136. Salzberg, B.M., Grinvald, A., Cohen, L.B., Davila, H.V., Ross, W.N.: Optical recording of neuronal activity in an invertebrate central nervous system: Simultaneous monitoring of several neurons. J. Neurophysiology 40, 1281–1291 (1977)Google Scholar
  137. Schmidt, S., Reich, R., Witt, H.T.: Electrochromism of chlorophylls and carotenoids in multilayers and chloroplasts. Naturwissenschaften 58, 414 (1971)Google Scholar
  138. Schmidt, S., Reich, R., Witt, H.T.: Electrochromic measurements in vitro as test for the interpretation of field indicating absorption changes in photosynthesis. Proc. IInd Intern. Congr. Photosynthesis, 1971, Stresa, Vol. II, 1087–1095 (1972)Google Scholar
  139. Schuldiner, S., Kaback, H.R.: Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry 14, 5451–5460 (1975)PubMedGoogle Scholar
  140. Scordilis, S.P., Tedeschi, H., Edwards, C.: Donnan potential of rabbit skeletal muscle myofibrils. I. Electrofluorochromometric detection of potential. Proc. Natl. Acad. Sci. USA 72, 1325–1329 (1975)Google Scholar
  141. Simons, T.J.B.: Carbocyanine dyes inhibit Ca-dependent K efflux from human red cell ghosts. Nature 264, 467–469 (1976)Google Scholar
  142. Sims, P.J., Waggoner, A.S., Wang, C.-H., Hoffman, J.F.: Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phospho-tidylcholine vesicles. Biochemistry 13, 3315–3330 (1974)PubMedGoogle Scholar
  143. Skulachev, V.P.: Energy transformation in the respiratory chain. Curr. Top. Bioenerg. 4, 127–190 (1971)Google Scholar
  144. Slayman, C.L.: Proton pumping and generalized energetics: A review. In: Membrane Transport in Plants. Zimmermann, U., Dainty, J. (ed.). Berlin-Heidelberg-New York: Springer 1974, pp. 107–119Google Scholar
  145. Smith, G.R., Gurson, M.L., Riddell, A.T., Perris, A.D.: Inhibitory action of oestrogen on calcium-induced mitosis in rat bone marrow and thymus. J. Endocr. 65, 45–53 (1975)Google Scholar
  146. Smith, J.C., Russ, P., Cooperman, B.S., Chance, B.: Synthesis, structure determination, spectral properties, and energy-linked spectral responses of the extrinsic probe oxonol V in membranes. Biochemistry 15, 5094–5105 (1976)Google Scholar
  147. Sone, N., Yoshida, M., Hirata, H., Okamoto, H., Kagawa, Y.: Electrochemical potential of protons in vesicles reconstituted from purified proton-translocating adenosine triphosphatase. J. Memb. Biol. 30, 121–134 (1976)Google Scholar
  148. Stoeckenius, W., Lozier, R.H.: Light energy conversion in Halobacterium halobium. J. Supramol. Struct. 2, 769–774 (1974)Google Scholar
  149. Szabo, G.: Dual mechanism for the action of cholesterol on membrane permeability. Nature 252, 47–49 (1974)Google Scholar
  150. Tasaki, I., Carbone, E., Sisco, K., Singer, I.: Spectral analyses of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives. Biochem. Biophys. Acta 323, 220–233 (1973)Google Scholar
  151. Tasaki, I., Warashina, A.: Dye-membrane interaction and its changes during nerve excitation. Photochem. Photobiol. 24, 191–207 (1976)Google Scholar
  152. Tasaki, I., Watanabe, A., Hallett, M.: Fluorescence of squid axon membrane labeled with hydrophobic probes. J. Memb. Biol. 8, 109–132 (1972)Google Scholar
  153. Tasaki, I., Watanabe, A., Sandlin, R., Carnay, L.: Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc. Nal. Acad. Sci. USA 61, 883–888 (1968)Google Scholar
  154. Taylor, R.E.: The distribution of membrane current in nerve with longitudinal linearly increasing applied current. Bull. Math. Biophys. 14, 265–292 (1952)Google Scholar
  155. Taylor, R.E.: The contractile process is not associated with potential changes. J. Cell Comp. Physiol. 42, 103–123 (1953)Google Scholar
  156. Tedeschi, H.: Mitochondrial membrane potential: Evidence from studies with a fluorescent probe. Proc. Natl. Acad. Sci. USA 71, 583–585 (1974)Google Scholar
  157. Tosteson, D.C., Gunn, R.B., Wieth, J.O.: Chloride and hydroxyl ion conductance of sheep red cell membrane. In: Erythrocytes, Thrombocytes, Leukocytes. Gerlach, E., Moser, K., Deutsch, E., Wilmanns, W. (eds.). Stuttgart: Thieme 1973, pp. 62–66Google Scholar
  158. Tsien, R.Y., Hladky, S.B.: A quantitative resolution of the spectra of a membrane potential indicator, diS-C3(5), bound to cell components and to red blood cells. J. Memb. Biol. 38, 73–97 (1978)Google Scholar
  159. Vergara, J., Bezanilla, F.: Fluorescence changes during electrical activity in frog muscle stained with merocyanine. Nature 259, 684–686 (1976)Google Scholar
  160. Vergara, J., Bezanilla, F.: Nile blue fluorescence signals in frog single muscle fibers under voltage or current clamp conditions. Biophys. J. 17, 5a (1977)Google Scholar
  161. Waggoner, A.: Optical probes of membrane potential. J. Memb. Biol. 27, 317–334 (1976)Google Scholar
  162. Waggoner, A., Grinvald, A.: Mechanisms of rapid optical changes of potential sensitive dyes. Ann. N.Y. Acad. Sci. 303, 217–241 (1977)Google Scholar
  163. Waggoner, A.S., Sirkin, D., Tolles, R., Wang, C.H.: Rate of membrane permeation of potential sensitive dyes. Biophys. J. 15, 20a (1975)Google Scholar
  164. Waggoner, A.S., Wang, C.-H., Tolles, R.L.: Mechanism of potential-dependent light absorption changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes. J. Memb. Biol. 33, 109–140 (1977)Google Scholar
  165. Watanabe, A., Terakawa, S.: Alteration of birefringence signals from squid giant axons by intracellular perfusion with protease solution. Biochem. Biophys. Acta 436, 833–842 (1976a)Google Scholar
  166. Watanabe, A., Terakawa, S.: A long-lasting birefringence change recorded from a tetanically stimulated squid giant axon. J. Neurobiol. 7, 271–286 (1976b)Google Scholar
  167. West, W., Pearce, S.: The dimeric state of cyanine dyes. J. Phys. Chem. 69, 1894–1903 (1965)Google Scholar
  168. Witt, H.T., Moraw, R., Muller, A.: Zum Primäprozeß der Photosynthese an Chlorophyllkörnern außerhalb der pflanzlichen Zelle. Z. Elektrochemie 60, 1148–1153 (1956)Google Scholar
  169. Witt, H.T., Zickler, A.: Electrical evidence for the field indicating absorption change in bioenergetic membranes. FEBS Lett. 37, 307–310 (1973)Google Scholar
  170. Wolff, Ch., Buchwald, H.-E., Rüppel, H., Witt, K., Witt, H.T.: Rise time of the light induced electrical field across the functional membrane of photosynthesis. Z. Naturforsch. 24b, 1038–1041 (1969)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Lawrence B. Cohen
    • 1
  • Brian M. Salzberg
    • 2
  1. 1.Department of PhysiologyYale University School of MedicineNew HavenUSA
  2. 2.Department of Physiology and Pharmacology, School of Dental Medicine and Institute of Neurological SciencesUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations