Stable models of typed λ-calculi

  • Gérard Berry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 62)


Following Scott, the denotational semantics of programming languages are usually built from the notion of continuous functions. The need for restricted models has been emphasized by Plotkin and Milner, which showed thats continuous function models did not capture all operational properties of ALGOL-like sequential languages. We present new model constructions from a notion of stable function. This requires the introduction of two different orderings between stable functions which give very different cpo structures to the function spaces. We show that Milner's fully abstract model of Plotkin's PCP language only contains stable functions.


Abstract Model Stable Model Stable Function Symbolic Model Denotational Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. BERRY, "Bottom-up Computations of Recursive Programs", R.A.I.R.O. Informatique Theorique, vol.10, no 3, mars 1976, pp 47–82.Google Scholar
  2. [2]
    G. BERRY, "Séquentialité de l'Evaluation formelle des λ-expressions", Proc. 3rd International Colloquium on Programming, Paris, march 28–30, 1978, DUNOD.Google Scholar
  3. [3]
    G. BERRY, "Calculs Optimaux des Programmes dans les Interprétations stables", Thèse de doctorat d'Etat, to appear.Google Scholar
  4. [4]
    G. BERRY, P.L. CURIEN, "Sequential Computations in Concrete Data structures", to appear.Google Scholar
  5. [5]
    G. BERRY, J.J. LEVY, "Minimal and Optimal Computations of Recursive Programs", Proc. 3rd ACM Symposium on Principles of Programming Languages, Los Angeles, jan. 1977. To appear in JACM.Google Scholar
  6. [6]
    B. COURCELLE, J.C. RAOULT, "Completion of ordered magmas", Fondamenta Informatica, Poland 1978, to appear.Google Scholar
  7. [7]
    G. KAHN, G. PLOTKIN, "Concrete Data Structures", to appear.Google Scholar
  8. [8]
    J.J. LEVY, "An algebraic interpretation of the λβκ-calculus and an application of a labelled λ-calculus", Rome, 1975 and TCS, vol. 2, no 1, 1976, p. 97–114.Google Scholar
  9. [9]
    J.J. LEVY, "Réductions correctes et optimales dans le λ-calcul", Thèse de doctorat d'Etat, Univ. Paris VII, jan. 1978.Google Scholar
  10. [10]
    R. MILNER, "Implementation and application of Scott's logic for computable functions", Proc. ACM Conference on Proving Assertions about Programs, SIGPLAN Notices 7, 1 (jan. 1972) 1–6.Google Scholar
  11. [11]
    R. MILNER, "Models of LCF", Stanford Comp. Sci. Dept. Memo. CS-73-332, Stanford, 1973.Google Scholar
  12. [12]
    R. MILNER, "Fully Abstract Models of typed λ-calculi", T.C.S. vol. 4, no 1, feb. 1977, pp. 1–23.CrossRefGoogle Scholar
  13. [13]
    G.D. PLOTKIN, "LCF as a Programming Language", Proc. Conf. Proving and Improving Programs, Arc-et-Senans, France, 1975, and T.C.S. vol. 5, no 3, 1977, pp. 223–257.Google Scholar
  14. [14]
    G.D. PLOTKIN, "A Powerdomain Construction", SIAM Journal of Computing, Vol. 5, no 3, sept. 1976.Google Scholar
  15. [15]
    G.D. PLOTKIN, M. SMYTH, "The category-theoretic solution of recursive domain equations", Proc. 18 th Annual Symposium on Foundations of Computer Science, Oct. 31 — Nov. 2, 1977.Google Scholar
  16. [16]
    V. Yu. SAZONOV, "Sequentially and Parallelly Computable functionals", Rome, march 75. Springer — Verlag LNCS no 37.Google Scholar
  17. [17]
    D. SCOTT, "Data types as Lattices", Lecture Notes, unpublished, Amsterdam 1972.Google Scholar
  18. [18]
    D. SCOTT, "Outline of a mathematical theory of Computation", Proc. 4th Ann. Princeton Conf. on Information Sciences and Systems, Princeton Univ., Princeton, N.J., 1970, pp 169–176.Google Scholar
  19. [19]
    J. VUILLEMIN, "Proof Techniques for Recursive Programs", Ph. D. Thesis, Stanford University, 1973.Google Scholar
  20. [20]
    C.P. WADSWORTH, "The relation between Operational and Denotational properties for Scott's D model of the λ-calculus, SIAM Journal of Computing, vol. 5, no 3, sept. 1976.Google Scholar
  21. [21]
    M. WAND, "Fixed — Points Constructions in order-enriched Categories", TR 23, Comp. Sci. Dept. Indiana Univ., 1975.Google Scholar
  22. [22]
    P.H. WELCH, "Continuous Semantics and Inside-out Reductions", Rome, 1975, Springer Verlag, LNCS no 37.Google Scholar
  23. [23]
    G. HUET, "Résolution d'équations dans les langages d'ordre 1,2,...,ω". Thèse d'Etat, Université PARIS VII, Paris, Sept. 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Gérard Berry
    • 1
  1. 1.Ecole des Mines, Sophia-AntipolisValbonneFrance

Personalised recommendations