Characterization problems in the theory of inductive inference

  • Rolf Wiehagen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 62)


Complexity Class Effective Operator Recursive Function Inductive Inference Identification Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adleman, L., Blum, M., Inductive inference and unsolvability. Preprint.Google Scholar
  2. Barzdin, J.M. (1971), Complexity and frequency solution of some algorithmically unsolvable problems. Doct. Diss., Nowosibirsk (in Russian)Google Scholar
  3. Barzdin, J.M. (1974, 1975, 1977, Ed.), Theory of algorithms and programs, vol. 1–3. Latvian State Univ., Riga (in Russian)Google Scholar
  4. Barzdin, J.M., Freivald, R.V. (1972), On the prediction of general recursive functions. Soviet Math. Dokl. 13, 1224–1228Google Scholar
  5. Barzdin, J.M., Podnieks, K.M. (1973), On the theory of inductive inference. Proc. Symp. MFCS'73, High Tatras (in Russian)Google Scholar
  6. Blum, M. (1967), A machine-independent theory of complexity of recursive functions. J. ACM 14, 322–336CrossRefGoogle Scholar
  7. Blum, L., Blum, M. (1975), Toward a mathematical theory of inductive inference. Inf. and Control 28, 125–155CrossRefGoogle Scholar
  8. Freivald, R.V. (1975), Minimal Gödel numbers and their identification in the limit. Lect. Notes in Comp. Sci. 32, 219–225Google Scholar
  9. Freivald, R.V. (1977), personal communicationGoogle Scholar
  10. Gold, E.M. (1965), Limiting recursion. J. Symb. Logic 30, 28–48Google Scholar
  11. Gold, E.M. (1967), Language identification in the limit. Inf. and Control 10, 447–474CrossRefGoogle Scholar
  12. Grabowski, J. (1976), Starke Erkennbarkeit. Humboldt-Univ. Berlin (to be published)Google Scholar
  13. Jantke, K.-P. (1978), Leistungsfähigkeit und Kompliziertheit universeller Verfahren zur Erkennung allgemein-rekursiver Funktionen. Diss. A, Humboldt-Univ. BerlinGoogle Scholar
  14. Jung, H. (1977), Zur Untersuchung von abstrakten interaktiven Erkennungssytemen. Diss. A, Humboldt-Univ. BerlinGoogle Scholar
  15. Lindner, R. (1972), Algorithmische Erkennung. Diss. B, Univ. JenaGoogle Scholar
  16. Minicozzi, E. (1976) Some natural properties of strong-identification in inductive inference. Theo. Comp. Sci. 2, 345–360CrossRefGoogle Scholar
  17. Rogers, H.Jr. (1967), Theory of recursive functions and effective computability. McGraw-Hill, New YorkGoogle Scholar
  18. Thiele, H. (1973), Lernverfahren zur Erkennung formaler Sprachen. Kybernetik-Forschung 3, 11–93Google Scholar
  19. Thiele, H. (1975), Zur Charakterisierung von Erkennungssytemen mit einbettendem Konvergenzbegriff. Kompliziertheit von Lern-und Erkennungsprozessen 2, Univ. Jena, 188–207Google Scholar
  20. Wiehagen, R. (1977), Identification of formal languages. Lect. Notes in Comp. Sci. 53, 571–579Google Scholar
  21. Wiehagen, R. (1978), Zur Theorie der algorithmischen Erkennung. Diss. B, Humboldt-Univ. BerlinGoogle Scholar
  22. Wiehagen, R., Jung, H. (1977), Rekursionstheoretische Charakterisierung von erkennbaren Klassen rekursiver Funktionen. Elektr. Informationsverarbeitung und Kybernetik 13, 385–397Google Scholar
  23. Wiehagen, R., Liepe, W. (1976), Charakteristische Eigenschaften von erkennbaren Klassen rekursiver Funktionen. Elektr. Informationsverarbeitung und Kybernetik 12, 421–438Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Rolf Wiehagen
    • 1
  1. 1.Sektion MathematikHumboldt-Universität zu BerlinBerlin

Personalised recommendations