On the power of self-application and higher type recursion

  • W. Damm
  • E. Fehr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 62)


High Type Semantic Function Denotational Semantic Tree Language Operation Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. [1]
    ABDALI, S.K. A lambda-calculus model of programming languages I, II Journal of Computer Languages, Vol. 1, Pergamon Press, (1976), pp. 287–320CrossRefGoogle Scholar
  2. [2]
    DAMM, W. Higher type program schemes and their tree languages Proc. 3rd GI conference on Theoretical Computer Science Lecture Notes in Computer Science 48 (1977), pp. 51–72 Springer VerlagGoogle Scholar
  3. [3]
    DAMM, W. Languages defined by higher type program schemes Proc. 4th international colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science 52 (1977), pp. 164–179, Springer VerlagGoogle Scholar
  4. [4]
    DAMM, W. The IO and OI hierarchies Schriften zur Informatik und Angewandten Mathematik, RWTH Aachen (1978)Google Scholar
  5. [5]
    DAMM, W. Procedure schemes Schriften z. Inform. u. Angew. Math., RWTH Aachen (1978)Google Scholar
  6. [6]
    DAMM, W. / FEHR, E. / INDERMARK, K. Higher type recursion and self-application as control structures Proc. 1977 IFIP working conference on Formal Description of Programming Concepts, ed. E. Neuhold, North-Holland Publishing CompanyGoogle Scholar
  7. [7]
    EGLI, H. Typed meaning in Scott's λ-calculus models Proc. 1975 Symposium on λ-calculus in Rome, Lecture Notes in Computer Science 37 (1975), pp. 220–239, Springer VerlagGoogle Scholar
  8. [8]
    ENGELFRIET, J. / SCHMIDT, E.M. IO and OI part I and II Journal of Computer and System Sciences Vol. 15, Number 3, and Vol. 16, Number 1, pp. 67–99 (1978)CrossRefGoogle Scholar
  9. [9]
    FEHR, E. Eine universelle Lambda-Kalkül-Programmiersprache und ihr Interpreter Informatik-Berichte, Universität Bonn, Nr. 6 (1975)Google Scholar
  10. [10]
    FEHR, E. On typed and untyped λ-schemes Schriften zur Informatik und Angewandten Mathematik, RWTH Aachen (1978)Google Scholar
  11. [11]
    FISCHER, M.J. Grammars with macro-like productions Proc. 9th IEEE conference on Switching and Automata Theory (1968), pp. 131–142Google Scholar
  12. [12]
    GOGUEN, J.A. / THATCHER, J.W. / WAGNER, E.G. / WRIGHT, J.B. Initial Algebra Semantics and Continuous Algebras JACM, Vol. 24, 1 (1977), pp. 68–95CrossRefGoogle Scholar
  13. [13]
    GORDON, M. Operational reasoning and denotational semantics Memo AIM-264, Comp. Sci. Dept., Stanford UniversityGoogle Scholar
  14. [14]
    McGOWAN, C.L. The correctness of a modified SECD machine Second ACM Symposium on Theory of Computing (1970)Google Scholar
  15. [15]
    INDERMARK, K. Schemes with recursion on higher types Proc. 5th conference on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 45 (1976), Springer Verlag, pp. 352–358Google Scholar
  16. [16]
    LANDIN, P.J. A correspondence between ALGOL 60 and Church's Lambda notation Comm. ACM, 8 (1965)Google Scholar
  17. [17]
    LANGMAACK, H. On procedures as open subroutines I, II Acta Informatica, Vol. 2 (1973), p. 311–333, and Vol. 3 (1974), p. 227–241CrossRefGoogle Scholar
  18. [18]
    LEDGARD, H. Ten mini languages: A study of topical issues in programming languages Computing Surveys, Vol. 3, No. 3 (Sept. 1971), p. 115–146CrossRefGoogle Scholar
  19. [19]
    MILNE, R. / STRACHEY, C. A theory of programming language semantics part a and b, Chapman and Hall (1976)Google Scholar
  20. [20]
    MILNER, R. Models of LCF Memo AIM-186, Stanford University (1973)Google Scholar
  21. [21]
    MOSSES, P. The mathematical semantics of ALGOL 60 PRG-Report, Oxford University (1974)Google Scholar
  22. [22]
    NIVAT, M. Languages algébriques sur le magma libre et sémantique des schémas de programme Automata, Languages, and Programming, ed. Nivat, (1972), pp. 293–307, North-Holland Publishing CompanyGoogle Scholar
  23. [23]
    NIVAT, M. On the interpretation of recursive program schemes Symposia Matematica, Atti del convegno d'Informatica theorica (1972), RomeGoogle Scholar
  24. [24]
    SCOTT, D. Continuous lattices Proc. of Dalhousie conference, Lecture Notes in Mathematics 274 (1972), pp. 97–134, Springer VerlagGoogle Scholar
  25. [25]
    WADSWORTH, C. The relation between computational and denotational properties for Scott's D -models of the lambda-calculus SIAM, J. Computing, Vol. 5, No. 3 (Sept. 1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • W. Damm
    • 1
  • E. Fehr
    • 1
  1. 1.Lehrstuhl für Informatik II, RWTHAachen

Personalised recommendations