(Semi)-separability of finite sets of terms in Scott's D-models of the λ-calculus

  • M. Coppo
  • M. Dezani-Ciancaglini
  • S. Ronchi della Rocca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 62)


A finite set {F1, ...,Fn} of terms of λ-calculus is said to be:
  • separable iff, given n arbitrary terms X1, ..., Xn, there exists a context C [ ] such that C[Fi]=Xi for 1≤i≤n

  • semi-separable iff, given n−1 arbitrary terms X1, ..., Xn−1 there exists a context C [ ] such that C [Fi]=Xi for 1≤i ≤n−1 and C [Fn] is unsolvable.

In the present paper the constructive characterization of (semi)-se parability of finite sets of terms is given inside Scott's D-models of the λ-calculus.


Equivalence Class Normal Form Inductive Step Correspondent Node Lambda Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. BARENDREGT, A Characterization of Terms of the λ-I-calculus having a Normal Form, Journal of Symbolic Logic, 38, 3, (1973), 441–445.Google Scholar
  2. [2]
    H. BARENDREGT, The Type Free Lambda Calculus, in: the Handbook of Mathematical Logic, J. Barwise, ed., Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, (1977), 1092–1132.Google Scholar
  3. [3]
    H.BARENDREGT, J.BERGSTRA, J.W.KLOP, M.VOLKEN, Degrees, Reductions and Representability in the Lambda Calculus, preprint, Utrecht University, Department of Mathematics, (1976).Google Scholar
  4. [4]
    H.BARENDREGT, The Separability of β-η-normal Forms, preprint, Utrecht University, Department of Mathematics, (1976).Google Scholar
  5. [5]
    G.BERRY, Sequentialité de l'Evaluation Formelle des λ-expressions, to appear in: Programmation, B. Robinet, ed..Google Scholar
  6. [6]
    C. BÖHM, The CUCH as a Formal and Description Language, in: Formal Language Description Languages, T.B. Steel, ed., North-Holland, Amsterdam (1966), 179–197.Google Scholar
  7. [7]
    C.BÖHM, Alcune proprietà delle forme β-η-normali del λ-k-calcolo, I.A.C., 696, Roma, (1968).Google Scholar
  8. [8]
    C.BÖHM, M.DEZANI-CIANCAGLINI, P.PERETTI, S.RONCHI DELLA ROCCA, A Discrimination Algorithm inside λ-η-calculus, to appear in Journal of Theoretical Computer Science.Google Scholar
  9. [9]
    H. HYLAND, A Syntactic Characterization of the Equality in Some Models for the Lambda Calculus, J.London Math.Soc., 2, 12, (1976), 361–370.Google Scholar
  10. [10]
    J.J.LEVY, Réductions Corrects et Optimales dans le λ-calcul, Thèse de doctorat d'état, Université Paris VII, (1977).Google Scholar
  11. [11]
    G.D.PLOTKIN, LCF Considered as a Programming Language, to appear in Journal of Theoretical Computer Science.Google Scholar
  12. [12]
    D. SCOTT, The Lattice of Flow Diagrams, in: Semantics of Algorithmic Languages, E. Engeler, ed., Lecture Notes in Mathematics, 188, Springer-Verlag, New York, (1971), 311–366.Google Scholar
  13. [13]
    D. SCOTT, Continuous Lattices, In: Toposes, Algebraic Geometry and Logic, F.W. Lawvere, ed., Lecture Notes in Math. 274, Springer, Berlin, (1973), 97–136.Google Scholar
  14. [14]
    C.P. WADSWORTH, The Relation between Computational and Denotational Properties for Scott's D-models of the Lambda-Calculus, SIAM Journal Comput., 5, 3, (1976), 488–521.CrossRefGoogle Scholar
  15. [15]
    C.P. WADSWORTH, Approximate Reductions and Lambda Calculus Models, to appear in SIAM Journal on Computing.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • M. Coppo
    • 1
  • M. Dezani-Ciancaglini
    • 1
  • S. Ronchi della Rocca
    • 1
  1. 1.Istituto di Scienza dell'Informazione-Università di TorinoTorinoItaly

Personalised recommendations