Size — Depth tradeoff in boolean formulas

Extended abstract
  • Beate Commentz-Walter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 62)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brent, R.P.: The Parallel Evaluation of General Arithmetic Expressions, JACM 21, pp. 201–206, 1974.CrossRefGoogle Scholar
  2. [2]
    Brent, R.P.: The Parallel Evaluation of Arithmetic Expressions in Logarithmic Time, Proc. Symposium on Complexity and Parallel Numerical Algorithms (May 1973), Academic Press, New York, pp. 83–102Google Scholar
  3. [3]
    Brent, R.P., Kuck, D.J., Maruyama, K.M.: The Parallel Evaluation of Arithmetic Expressions without Division, IEEE Trans. Comp. C. 22, pp. 532–534, May 1973Google Scholar
  4. [4]
    Fischer, M.J., Mayer, A.R., Paterson, M.S.: Lower Bounds on the Size of Boolean Formulas, ACM, Proc. pp. 37–44, 1975Google Scholar
  5. [5]
    Hodes, L., Specker, E.: Length of Formulas and Elimination of Quantifiers I, Contributions to Math. Logic, ed. K. Schütte, North Holland Publ. Co., pp. 175–188, 1968 (appears in [18])Google Scholar
  6. [6]
    Krapchenko, V.M.: On the Complexity of the Realization of the Linear Function in the Class cf II-circuits, Math. Zametki 9, 1(1971), pp. 35–40 (Russian, a translation appears in reference 15 below).Google Scholar
  7. [7]
    Lupanov, O.B.: Effect on the Depth of Formulas on their Complexity, Cybernetics 6, pp. 62–66, 1970CrossRefGoogle Scholar
  8. [8]
    McColl, W.F.: Some Results on Circuit Depth, Report No. 18, Comp. Science Dept., University of Warwick, March 1977Google Scholar
  9. [9]
    Mehlhorn, K.: Effiziente Algorithmen, Teubner Studienbücher, Stuttgart, 1977Google Scholar
  10. [10]
    Muller, D.E.: Preparata F.P., Restructing of Arithmetic Expressions for Parallel Evaluation, JACM Vol. 23, pp.534–543, July 1976CrossRefGoogle Scholar
  11. [11]
    Muller, D.E.: Preparata F.P., Efficient Parallel Evaluation of Boolean Expression, IEEE Trans. C-25, pp. 548–549Google Scholar
  12. [12]
    Nechiporuk, E.I.: A Boolean Function, Soviet. Math. Doklady, Vol. 7, No. 4, pp. 999–1000, 1966 (compare [15], [17] and [18])Google Scholar
  13. [13]
    Paul, W.: N-Lower Bounds on the Combinational Complexity of Boolean Functions, ACM Proc., pp. 27–36, 1975Google Scholar
  14. [14]
    Pratt, V.R.: The Effect of Basis on Size of Boolean Expressions, SWAT, pp. 119–121, 1975Google Scholar
  15. [15]
    Savage, J.E.: The Complexity of Computing, John Wiley & Sons, Inc., New York, 1976Google Scholar
  16. [16]
    Schnorr, C.P.: A 3n-Lower Bound on the Network Complexity of Boolean Functions, Preliminary Report, Universität Frankfurt, FB Mathematik, 1978Google Scholar
  17. [17]
    Spira, P.M.: On Time Hardware Complexity Tradeoffs for Boolean Functions, 4th Hawai Int. Symp. on Systems Science, pp. 525–527, 1971 (compare [14])Google Scholar
  18. [18]
    Specker, E., Strassen, V.: Komplexität von Entscheidungsproblemen, Lecture Notes in Computer Science 43, Springer Verlag, pp. 182–217Google Scholar
  19. [19]
    Commentz-Walter, B.: Tradeoff zwischen Größe und Tiefe boolescher Formeln, Dissertation, Universität des Saarlandes, Math.-Nat.-Fakultät, 1978, a translation to appear 1978Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Beate Commentz-Walter
    • 1
  1. 1.FB 10 — InformatikUniversität des SaarlandesSaarbrückenBRD

Personalised recommendations