Foundations of equilibrium quantum statistical mechanics

  • Daniel Kastler
Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 80)


Gauge Group Automorphism Group Invariant State Quantal Ergodicity Observable Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. HAAG, N. HUGENHOLTZ, M. WINNINK On the Equilibrium States in Quantum Statistical Mechanics. Commun. math. Phys. 5, 215 (1967).CrossRefGoogle Scholar
  2. [2]
    R. KUBO J. Physic. Soc. Japan, 12, 570 (1957).Google Scholar
  3. [3]
    P.C. MARTIN, J. SCHWINGER Phys. Rev. 115, 1342 (1959).Google Scholar
  4. [4]
    M. TAKESAKI Tomita's Theory of modular Hilbert Algebras and its Applications. Springer Lecture Notes in Math. no 128 (1970).Google Scholar
  5. [5]
    R. HAAG, D. KASTLER, E. TRYCH-POHLMEYER Stability and Equilibrium States. Commun. math. Phys. 38, 173 (1974).Google Scholar
  6. [6]
    O. BRATTELI, D. KASTLER Relaxing the Clustering Condition in the Derivation of the KMS Property. Commun. math. Phys. 46, 37 (1976).Google Scholar
  7. [7]
    D. KASTLER Equilibrium States of Matter and Operator Algebras. Symposia Mathematics XX, 49 (1976).Google Scholar
  8. [8]
    R. HAAG, E. TRYCH-POHLMEYER Hambourg Preprint.Google Scholar
  9. [9]
    D. RUELLE States of Physical Systems. Commun. Math. Phys. 3, 1 (1966).Google Scholar
  10. [10]
    S. DOPLICHER, D. KASTLER, D.W. ROBINSON Covariance Algebras in Field Theory and Statistical Mechanics. Commun. math. Phys. 3, 1 (1966).Google Scholar
  11. [11]
    S. DOPLICHER, D. KASTLER, E. STÖRMER Invariant States and Asymptotic Abelianness and literature quoted therein. J. Funct. Anal. 3, 419 (1969).Google Scholar
  12. [12]
    S. DOPLICHER-Private communication.Google Scholar
  13. [13]
    H. ARAKI Expansional in Banach Algebras. Ann. Sci. Ecole Norm. Sup. 6, 1 (1973).Google Scholar
  14. [14]
    H. ARAKI Relative Hamiltonian for faithful Normal States of a von Neumann Algebra. Pub. RIMS Kyoto University 9, 165 (1973).Google Scholar
  15. [15]
    D.W. ROBINSON Return to Equilibrium. Commun. math. Phys. 31, 171 (1973).Google Scholar
  16. [16]
    R. HAAG-Private communication.Google Scholar
  17. [17]
    H. ARAKI, A. KISHIMOTO Symmetry and Equilibrium States Commun. math. Phys. 52, 211 (1977).Google Scholar
  18. [18]
    H. ARAKI, R. HAAG, D. KASTLER, M. TAKESAKI Extension of KMS States and Chemical Potential. Commun. math. Phys. 53, 97 (1977).Google Scholar
  19. [19]
    A. CONNES Une classification des facteurs de type III. Ann. Sei. Ecole Norm. Sup. 6, 133 (1973).Google Scholar
  20. [20]
    S. DOPLICHER, R. HAAG, J.E. ROBERTS Fields, Observables and Gauge Transformations I and II Commun. math. Phys. 13, 1 (1969) and 15, 173 (1969).Google Scholar
  21. [21]
    S. DOPLICHER, R. HAAG, J.E. ROBERTS Local Observables and Particle Statistics I and II. Commun. math. Phys. 23, 199 (1971) and 35, 49 (1974).Google Scholar
  22. [22]
    S. DOPLICHER — Private communication.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Daniel Kastler

There are no affiliations available

Personalised recommendations