A survey of local cohomology

  • John E. Roberts
Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 80)


Gauge Group Local Cohomology Observable Algebra Physical Hilbert Space Continuous Unitary Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. STROCCHI, A.S. WIGHTMAN, Proof of the Charge Superselection Rule in Local Relativistic Quantum Field Theory, J. Math. Phys. 15, 2198–2224 (1974)Google Scholar
  2. [2]
    K. POHLMEYER, The Equation CurlWµ(t8)=0 in Quantum Field Theory, Commun.math.Phys., 25, 73–86 (1972)Google Scholar
  3. [3]
    F. STROCCHI, Gauge Problem in Quantum Field Theory, Phys. Rev. 162, 1429–1438 (1967)Google Scholar
  4. [4]
    J. KOGUT, L. SUSSKIND, Hamiltonian Formulation of Wilson's Lattice Gauge Theories, Phys. Rev. D11, 395–408 (1975)Google Scholar
  5. [5]
    R.F. STREATER, J.F. WILDE, Fermion States of a Boson Field, Nucl. Phys. B24, 561–575 (1970)Google Scholar
  6. [6]
    J. DIXMIER, Les C*-algébres et leurs représentations, Gauthier-Villars, Paris 1964Google Scholar
  7. [7]
    J.E. ROBERTS, Local Cohomology and Superselection Structure, Commun.math.Phys., 51, 107–119 (1976)Google Scholar
  8. [8]
    S. DOPLICHER, R. HAAG, J.E. ROBERTS, Local Observables and Particle Statistics I, Commun.math.Phys. 23, 199–230 (1971).Google Scholar
  9. [9]
    S. DOPLICHER, R. HAAG, J.E. ROBERTS, Local Observables and Particle Statistics II, Commun.math.Phys., 35, 49–85 (1974)Google Scholar
  10. [10]
    J.J. BISOGNANO, E.H. WICHMANN, On the Duality Condition for Quantum Fields, J. Math.Phys., 17, 303–321 (1976)Google Scholar
  11. [11]
    H. ARAKI, R. HAAG, D. KASTLER, M. TAKESAKI, Extensions of KMS States and Chemical Potential, Commun.math.Phys., 53, 97–134 (1977)Google Scholar
  12. [12]
    J. FRÖHLICH, New Superselection Sectors (“Soliton-States”) in Two-Dimensional Bose Quantum Field Theory Models, Commun.math.Phys., 47, 269–310 (1976)Google Scholar
  13. [13]
    J.L. BONNARD, R.F. STREATER, Local Gauge Models predicting their own Superselection Rules, Helv. Phys. Acta, 49, 259–267 (1976)Google Scholar
  14. [14]
    G.H. DERRICK, Comments on Nonlinear Wave Equations as Models for Elementary Particles, J. Math. Phys., 5, 1252–1254 (1964)Google Scholar
  15. [15]
    S. DOPLICHER, R. HAAG, J.E. ROBERTS, Fields, Observables and Gauge Transformations II, Commun. math. Phys. 15, 173–200 (1969)Google Scholar
  16. [16]
    S. DOPLICHER, J.E. ROBERTS, Fields, Statistics and Non-Abelian Gauge Groups, Commun.math.Phys., 28, 331–348 (1972)CrossRefGoogle Scholar
  17. [17]
    J.E. ROBERTS, Cross Products of von Neumann Algebras by Group Duals, Symposia Mathematica 22, 335–363, Academic Press, London, New York 1976.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • John E. Roberts
    • 1
  1. 1.Centre de Physique ThéoriqueCNRS, Marseille and UER Expérimentale et Pluridisciplinaire de LuminyParis

Personalised recommendations