Advertisement

Number of phases in one component ferromagnets

  • Joel L. Lebowitz
Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 80)

Abstract

Using a new inequality, derived here, we obtain information about the number of pure phases which can coexist in one component spin system with (many body) ferromagnetic interactions. This extends previous results [1] for spin- 1 2 Ising systems to continuous spin systems.

Keywords

Gibbs Measure Gibbs State Ferromagnetic Interaction Ising System Infinite Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Lebowitz, Coexistence of Phases in Ising Ferromagnets, Jour. Stat. Phys. 16, 463 (1977).CrossRefGoogle Scholar
  2. 2.
    c.f. R.B. Griffiths, in Phase Transitions and Critical Phenomena, C. Domb and M.S. Green, eds., Academic Press (1972), Vol. 1, pp. 7–109; C. Gruber, J. Stat. Phys. 14, 81 (1976).Google Scholar
  3. 3.
    D. Ruelle, Statistical Mechanics, Benjamin (1969): Thermodynamic Formalism, Addison-Wesley (to appear).Google Scholar
  4. 4.
    R.L. Dobrushin, Functional Anal. Appl. 2, 292 and 302 (1968).Google Scholar
  5. 5.
    O.E. Lanford and D. Ruelle, Commun. Math. Phys. 13, 194 (1969); O.E. Lanford, in Statistical Mechanics and Math. Problems, A. Lenard, ed., Springer (1973).Google Scholar
  6. 6.
    R.B. Israel, Comm. Math. Phys. 43, 59 (1975): S.A. Pirogov and Ya. G. Sinai, Funkts. Analiz. 25 (1974): D. Ruelle, On Manifolds of Phase Coexistence, Preprint (1975).Google Scholar
  7. 7.
    A. Messager and S. Miracle-Sole, Comm. Math. Phys. 40, 187 (1975).Google Scholar
  8. 8.
    G. Gallavotti and S. Miracle-Sole, Phys. Rev. B5, 2555 (1972): J. Slawny, Comm. Math. Phys. 34, 271 (1973): 46, 75 (1976): C. Gruber, A. Hinterman and D. Merlini, Comm. Math. Phys. 40, 83 (1975): C. Gruber and A. Hinterman, Physics 83A, 233 (1975).Google Scholar
  9. 9.
    J. Ginibre, Comm. Math. Phys. 16, 310 (1970).Google Scholar
  10. 10.
    R.B. Griffiths, J. Math. Phys. 8, 478 (1967); D.G. Kelley and S. Sherman, J. Math. Phys. 9, 466 (1969).Google Scholar
  11. 11.
    J.L. Lebowitz and A. Martin-Löf, Comm. Math. Phys. 25, 276 (1972).Google Scholar
  12. 12.
    H. van Beyeren, Comm. Math. Phys. 40, 1 (1975).Google Scholar
  13. 13.
    C.M. Fortuin, P.W. Kasteleyn and J. Ginibre, Comm. Math. Phys. 22, 89 (1971).Google Scholar
  14. 14.
    J.L. Lebowitz, J. Stat. Phys., 16, 3 (1977).Google Scholar
  15. 15.
    c.f. J.L. Lebowitz, in Mathematical Problems in Theoretical Physics, H. Araki, ed., Springer (1975).Google Scholar
  16. 16.
    J. Frohlich, B. Simon and T. Spencer, Comm. Math. Phys. 50, 79 (1976).Google Scholar
  17. 17.
    L. Onsager, Phys. Rev. 65, 117 (1944).CrossRefGoogle Scholar
  18. 18.
    J.L. Lebowitz, Comm. Math. Phys. 28, 313 (1972).Google Scholar
  19. 19.
    A. Martin-Löf, Comm. Math. Phys. 25, 87 (1972).Google Scholar
  20. 20.
    uJ.L. Lebowitz and E. Presutti, Comm. Math. Phys. 50, 195 (1976).Google Scholar
  21. 21.
    A. Messager, S. Miracle-Sole and C. Pfister, to be published.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Joel L. Lebowitz
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations