Stochasticity and irreversibility in infinite mechanical systems

  • Gérard G. Emch
Short Communications
Part of the Lecture Notes in Physics book series (LNP, volume 80)


The concepts of KoZmogorov entropy and Kolmogorov flows are extended to quantum dynamical systems described in the language of von Neumann algebras. This generalization carries over to the quantum realm the result that the entropy of non-singular K-flows is strictly positive ; in particular, this entropy is again infinite for the quantum generalization of the flow of Brownian motion.


Measurable Partition Hilbert Algebra Dynamical Entropy Kolmogorov Entropy Quantum Generalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.N. Kolmogorov, A New Metric Invariant of Transcient Dynamical Systems and Automorphisms of Lebesgue Spaces, Dokl. Akad. Nauk 119, 861 (1958).Google Scholar
  2. 2.
    A.N. Kolmogorov, On the Entropy per Time Unit as a Metric Invariant of Automorphisms, Dokl. Akad. Nauk 124, 754 (1959).Google Scholar
  3. 3.
    Ya. Sinai, On the Concept of Entropy for Dynamical Systems, Dokl. Akad. Nauk 124, 768 (1959).Google Scholar
  4. 4.
    Ya. Sinai, Dynamical Systems with countably-multiple Lebesgue Spectrum, Izvestia Mat. Nauk 25, 899 (1961).Google Scholar
  5. 5.
    A. Connes and E. Størmer, Entropy for Automorphisms of Type III von Neumann Algebras, Acta Mathematica 134, 289 (1975).Google Scholar
  6. 6.
    G.G. Emch, Positivity of the K-Entropy on Non-Abelian K-Flows, z. Wahrscheinlichkeitstheorie verw. Gebiete 29, 241 (1974).Google Scholar
  7. 7.
    G.G. Emch, Generalized K-Flows, Commun. math. Phys. 49, 191 (1976).Google Scholar
  8. 8.
    J. von Neumann, Grundlagen der Quantenmechanik, Springer, Berlin (1932).Google Scholar
  9. 9.
    M. Takesaki, Tomita's theory of Modular Hilbert Algebras, Springer Lecture Notes in Mathematics No. 128 (1970).Google Scholar
  10. 10.
    A.J. Khinchin, Mathematical Foundatons of Information Theory, Uspechi Mat. Nauk 7 (1953) and 11 (1956).Google Scholar
  11. 11.
    T. Hida, Stationary Stochastic Processes, Princeton University Press, (1970).Google Scholar
  12. 12.
    G.G. Emch, Non-Equilibrium Statistical Mechanics, Acta Physica Austriaca, Suppl. XV, 79 (1976); and: A Dilation Problem in Non-Equilibrium Statistical Mechanics, preprint, Rochester, (1977)Google Scholar
  13. 13.
    G.G. Emch, S. Albeverio and J.P. Eckmann, Quasi-Free Generalized K-Flows, preprint, Geneva, (1977)Google Scholar
  14. 14.
    G.G. Emch, Minimal Dilations of CP-Flows, to appear in Proc. U.S. Japan Conference on Operator Algebras, R.V. Kadison, ed.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Gérard G. Emch
    • 1
  1. 1.Dpts of Mathematics and of PhysicsUniversity of RochesterUSA

Personalised recommendations