Lattice gauge theories

  • K. Osterwalder
  • E. Seiler
Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 80)


Continuum Limit Spontaneous Symmetry Breaking Cluster Expansion Lattice Gauge Theory Gauge Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BDI]
    R. Balian, J.M. Drouffe, C. Itzykson, Phys. Rev. D10 3376 (1974); D11, 2098 (1975); D11, 2104 (1975)Google Scholar
  2. [B]
    F.A. Berezin, The Method of Second Quantization, Academic Press, New York 1966Google Scholar
  3. [BFL]
    J. Bricmont, J.R. Fontaine, L.J. Landau, On the Uniqueness of the Equilibrium State in Plane Rotators, Louvain la Neuve preprint UCL-IPT-77/03Google Scholar
  4. [DA DF G 1]
    G.F. DeAngelis, D. deFalco, F. Guerra, Lattice Gauge Models in the Strong Coupling Regime, Salerno preprint 1977Google Scholar
  5. [DA DF G 2]
    —, A Note on the Abelian Higgs-Kibble Model on a Lattice: Absence of Spontaneous Magnetization, Salerno preprint 1977Google Scholar
  6. [EB]
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)CrossRefGoogle Scholar
  7. [FS]
    J. Fröhlich, B. Simon, Ann. Math. 105 (1977)Google Scholar
  8. [FSS]
    J. Fröhlich, B. Simon, T. Spencer, Commun. Math. Phys. 50 79 (1976)Google Scholar
  9. [GJ 1]
    J. Glimm, A. Jaffe, Commun. Math. Phys. 51, 1 (1976)Google Scholar
  10. [GJ 2]
    — Phys. Lett. 66B, 67 (1977)Google Scholar
  11. [GJ 3]
    —Instantons in a U(1) Lattice Gauge Theory: A Coulomb Dipole Gas, Harvard preprint 1977Google Scholar
  12. [GJS]
    J. Glimm, A. Jaffe, T. Spencer, in: Constructive Quantum Field Theory, G. Velo and A.S. Wightman eds., Spinger Lecture Notes in Physics 25 (1973)Google Scholar
  13. [GW]
    D. Gross, F. Wilczek, Phys. Rev. Lett. 26, 1343 (1973)Google Scholar
  14. [GK]
    C. Gruber, H. Kunz, Commun. Math. Phys. 22, 133 (1971)Google Scholar
  15. [G1]
    F. Guerra, Phys. Rev. Lett. 28, 1213 (1972)Google Scholar
  16. [G2]
    — in Mathematical Methods of Quantum Field Theory, CNRS Marseille 1976Google Scholar
  17. [H]
    P. Higgs, Phys. Lett. 12, 132 (1964); Phys. Rev. 145, 1156 (1966)Google Scholar
  18. [La]
    O. Lanford, in Statistical Mechanics and Mathematical Problems, A. Lenard ed., Springer Lecture Notes in Physics 20 (1973)Google Scholar
  19. [L1]
    M. Lüscher, Construction of a Self-Adjoint,Strictly Positive Transfer Matrix for Euclidean Lattice Gauge Theory, DESY preprint 1976Google Scholar
  20. [L2]
    — Absence of Spontaneous Symmetry Breaking in Lattice Gauge Theories, DESY preprint 1977Google Scholar
  21. [MD]
    A. MacDermot, Ph.D. Thesis, Cornell University 1976Google Scholar
  22. [M]
    N.D. Mermin, J. Math. Phys. 8, 1061 (1967)Google Scholar
  23. [O]
    K. Osterwalder, Yang-Mills Fields on the Lattice, lecture delivered at the 1976 Cargèse summer school, Harvard preprint 1976Google Scholar
  24. [OS 1]
    K. Osterwalder, R. Schrader, Commun. Math. Phys. 31, 83 (1973); 42, 281 (1975)Google Scholar
  25. [OS 2]
    — Helv. Phys. Acta 46, 277 (1973)Google Scholar
  26. [OSe]
    K. Osterwalder, E. Seiler, Gauge Field Theories on the Lattice, Harvard preprint 1977 (subm. to Ann. Phys.)Google Scholar
  27. [P]
    H.D. Politzer, Phys. Rev. Lett. 26, 1346 (1973)Google Scholar
  28. [Sch]
    R. Schrader, Commun. Math. Phys. 49, 131 (1976); 50, 97 (1976)Google Scholar
  29. [SeS]
    E. Seiler, B. Simon, Ann. Phys. 97, 470 (1976)Google Scholar
  30. [W 1]
    K.G. Wilson, Phys. Rev. D10, 2445 (1975)Google Scholar
  31. [W 2]
    — 1976 Cargèse lecture notes, to appearGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • K. Osterwalder
    • 1
  • E. Seiler
    • 2
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridge
  2. 2.Joseph Henry Laboratories of PhysicsPrinceton UniversityPrinceton

Personalised recommendations