Dynamical systems with turbulent behavior

  • David Ruelle
Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 80)


Periodic Orbit Hopf Bifurcation Unstable Manifold Strange Attractor Sensitive Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.I. Arnold. Small denominators. I mappings of the circumference onto itself. Amer. Math. Soc. Transl. (Ser.2) 46, 213–284 (1965).Google Scholar
  2. [2]
    G. Benettin, L. Galgani, and J.-M. Strelcyn. Kolmogorov entropy and numerical experiments. Phys. Rev. A, 14, 2338–2345 (1976).CrossRefGoogle Scholar
  3. [3]
    R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics No 470. Springer, Berlin, 1975.Google Scholar
  4. [4]
    R. Bowen and D. Ruelle. The ergodic theory of Axiom A flows. Inventiones math. 29, 181–202 (1975).Google Scholar
  5. [5]
    A. Chenciner and G. Iooss. Bifurcation of a torus T2 into a torus T3. Preprint.Google Scholar
  6. [6]
    M.J. Feigenbaum. Quantative universality for a class of nonlinear transformations. Preprint.Google Scholar
  7. [7]
    J. Guckenheimer. A strange, strange attractor. Preprint.Google Scholar
  8. [8]
    J. Guckenheimer. Structural stability of Lorenz attractors. Preprint.Google Scholar
  9. [9]
    M. Hénon. A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976).Google Scholar
  10. [10]
    M.R. Herman. Conjugaison C des diffeomorphismesdu cercle pour presque tout nombre de rotations. CRAS to appear.Google Scholar
  11. [11]
    M.R. Herman. Mesure de Lebesgue et nombre de rotation. Preprint.Google Scholar
  12. [12]
    M.W. Hirsch and C.C. Pugh. Stable manifolds and hyperbolic sets. Proc. Sympos. Pure Math. 14, 133–163 AMS. Providence, R.I., 1970.Google Scholar
  13. [13]
    M.W. Jakobson. On smooth mappings of the circle into itself. Mat. Sbornik 85 (127) NO2 (6), 163–188 (1971).Google Scholar
  14. [14]
    T.Y. Li and J. Yorke. Period three implies chaos. SIAM J. Applied Math. To appear.Google Scholar
  15. [15]
    E.N. Lorenz. Deterministic nonperiodic flow. J. atmos. Sci. 20, 130–141 (1963).Google Scholar
  16. [16]
    R. Mañe. The stability conjecture on two-dimensional manifolds. Preprint.Google Scholar
  17. [17]
    J.E. Marsden and M. Mc Cracken. The Hopf bifurcation and its applications. Applied Math. Sci. 19. Springer, New York, 1976.Google Scholar
  18. [18]
    R.M. May. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976).PubMedGoogle Scholar
  19. [19]
    J.W. Milnor and W. Thurston. Unpublished.Google Scholar
  20. [20]
    S. Newhouse. Diffeomorphisms with infinitely many sinks. Topology 13, 9–18 (1974).Google Scholar
  21. [21]
    S. Newhouse. The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Preprint.Google Scholar
  22. [22]
    S. Newhouse, D. Ruelle, and F. Takens. Occurence of strange axiom A attractors near quasi periodic flows on Tm, m ≥ 3. Preprint.Google Scholar
  23. [23]
    V.I. Oseledec, A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems, Trudy Moskov. Mat. Obšč. 19, 179–210 (1968). English translation. Trans. Moscow Math. Soc. 19, 197–231 (1968).Google Scholar
  24. [24]
    Ja. B. Pesin. Ljapunov characteristic exponents and ergodic properties of smooth dynamical s stems with an invariant measure. Dokl. Akad. Nauk SSSR 226 No4, 774–777 (1976) English translation, Soviet Math. Dokl. 17 Np1, 196–199 (1976).Google Scholar
  25. [25]
    Ja. B. Pesin. Invariant manifold families which correspond to the nonvanishing characteristic exponents. Izv. Akad. Nauk SSSR, Ser. Mat. 40 No6, 1332–1379 (1976).Google Scholar
  26. [26]
    R.V. Plykin. Sources and currents of A-diffeomorphisms of surfaces. Mat. Sbornik 94 No2(6), 243–264 (1974).Google Scholar
  27. [27]
    C.C. Pugh and M. Shub. The O-stability theorem for flows. Inventiones Math. 11, 150–158 (1970).Google Scholar
  28. [28]
    P.J. Regal. Ecology and evolution of flowering plant dominance. Science 196, 622–629 (1977).Google Scholar
  29. [29]
    P.W. Richards. The tropical rain forest. Cambridge University Press, Cambridge, 1966.Google Scholar
  30. [30]
    D. Ruelle. Bifurcation in the presence of a symmetry group. Archive Rat. Mech. Anal. 51, 136–152 (1973).Google Scholar
  31. [31]
    D. Ruelle. A measure associated with Axiom A attractors. Amer. J. Math. 98, 619–654 (1976).Google Scholar
  32. [32]
    D. Ruelle. Statistical mechanics and dynamical systems, and papers from the 1976 Duke turbulence conference. Duke University Mathematics Series 3, Durham, 1977.Google Scholar
  33. [33]
    D. Ruelle. Applications conservant une mesure absolument continue par rapport à dx sur [0,1]. Commun. Math. Phys. 55, 47–51 (1977).Google Scholar
  34. [34]
    D. Ruelle. An inequality for the entropy of differentiable maps. Preprint.Google Scholar
  35. [35]
    D. Ruelle and F. Takens, On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971); 23, 343–344 (1971)CrossRefGoogle Scholar
  36. [36]
    Ja. G. Sinai. Gibbs measures in ergodic theory. Russian Math. Surveys 166, 21–69 (1972).Google Scholar
  37. [37]
    S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967).Google Scholar
  38. [38]
    S. Smale and R. Williams. The qualitative analysis of a difference equation of population growth. Preprint.Google Scholar
  39. [39]
    P. Štefan. A theorem of Šarkowskii on the existence of periodic orbits of continuous endomorphisms of the real line. Commun. Math. Phys. 54, 237–248 (1977).Google Scholar
  40. [40]
    R. Temam (editor). Turbulence and Navier-Stokes equations. Lecture Notes in Mathematics No565. Springer, Berlin, 1976.Google Scholar
  41. [41]
    R. Thom. Stabilité structurelle et morphogénése. W.A. Benjamin, Reading, Mass., 1972.Google Scholar
  42. [42]
    T.C. Whitmore. Tropical rain forests of the far east. Clarendon Press, Oxford, 1975.Google Scholar
  43. [43]
    R.F. Williams. The structure of Lorenz attractors. Preprint.Google Scholar
  44. [44]
    L.S. Young. Entropy of continuous flows on compact 2-manifolds. Preprint.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • David Ruelle
    • 1
  1. 1.IRESBures-sur-YvetteFrance

Personalised recommendations