Fluctuationes in Curie-Weiss exemplis

  • Richard S. Ellis
  • Charles M. Newman
Part of the Lecture Notes in Physics book series (LNP, volume 80)


Ising Model Critical Exponent Block Spin Renormalization Group Approach Fixed Point Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BEG]
    Blume, M., Emery, V.J., Griffiths, R.B.: Isin model for the λ transition and phase separation in He3-He4 mixtures. Phys. Rev. A 4, 1071–1077 (1971).CrossRefGoogle Scholar
  2. [BS]
    Benguigui, L., Schulman, L.S.: Topological classification of phase transitions. Phys. Lett. 45A, 315–316 (1973).Google Scholar
  3. [DN]
    Dunlop, F., Newman, C.M.: Multicomponent field theories and classical rotators. Commun. Math. Phys. 44, 223–235 (1975).CrossRefGoogle Scholar
  4. [EK]
    Emch, G.G., Knops, H.J.F.: Pure thermodynamic phases as extremal KMS states. J. Math. Phys. 11, 3008–3018 (1970).Google Scholar
  5. [EN1]
    Ellis, R.S., Newman, C.M.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. U. Mass/Indiana preprint (1977) submitted to Z. Wahrscheinlichkeitstheorie.Google Scholar
  6. [EN2]
    Ellis, R.S., Newman, C.M.: in preparation.Google Scholar
  7. [F]
    Feller, W.: An Introduction to Probability Theory and its Applications, Vol. II. New York: Wiley, 1966.Google Scholar
  8. [GK]
    Gallavotti, G., Knops, H.: The heierarchical model and the renormalization group. Rivisita del Nuovo Cimento 5, 341–368 (1975).Google Scholar
  9. [J-L]
    Jona-Lasinio, G.: Probabalistic approach to critical behavior. 1976 Cargése summer school on “New Developments in Quantum Field Theory and Statistical Mechanics”.Google Scholar
  10. [K]
    Kac, M.: Mathematical mechanisms of phase transitions in: Statistical Physics Phase Transitions and Superfluidity (Chretien, M., Gross, E.P., Deser, S., eds.). New York: Gordon and Breach, 1967.Google Scholar
  11. [Ka]
    Kadanoff, L.P.: Scaling, universality, and operator algebras in: Phase Transitions and Critical Phenomena, Vol. 5A (Domb, C., Green, M.S., eds.). New York: Academic 1976.Google Scholar
  12. [KS]
    Karlin, S., Studden, W.J.: Tchebycheff Systems: with Applications in Analysis and Statistics. New York: Interscience 1966.Google Scholar
  13. [SG]
    Simon, B., Griffiths, R.B.: The (φ4)2 field theory as a classical Ising model. Commun. Math. Phys. 33, 145–164 (1973).Google Scholar
  14. [SML]
    Schultz, T.D., Mattis, D.C., Lieb, E.H.: Two-dimensional Ising Model as a soluble problem of many fermions. Rev. Mod. Phys. 36, 856–871 (1964).Google Scholar
  15. [WF]
    Wilson, K.G., Fischer, M.E.: Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28, 240–243 (1972).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Richard S. Ellis
    • 1
  • Charles M. Newman
    • 2
  1. 1.Dept. of Mathematics and StatisticsUniversity of MassachusettsAmherst
  2. 2.Dept of MathematicsIndiana UniversityBloomingtonIndiana

Personalised recommendations