Geometry of Yang-Mills fields

  • F. Atiyah
Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 80)


Vector Bundle Morse Theory Compact Riemann Surface Holomorphic Structure Holomorphic Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.F. Atiyah, N.J. Hitchin and I.M. Singer, Deformations of Instantons, Proc.Nat.Acad.Sci.U.S.A. 1977.Google Scholar
  2. 2.
    M.F. Atiyah and R.S. Ward, Instantons and Algebraic Geometry, Comm.Math.Phys. 1977.Google Scholar
  3. 3.
    A. Belavin, A. Polyakov, A. Schwarz and Y. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys.Lett. 59B (1975), 85–87.Google Scholar
  4. 4.
    P. Goddard, J. Nuyts and D. Olive, Gauge Theories and Magnetic Charge, CERN Preprint, 1976.Google Scholar
  5. 5.
    A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer.J.Math. 79 (1957), 121–138.Google Scholar
  6. 6.
    M. Narasimhan and C. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540–567.Google Scholar
  7. 7.
    A. Newlander and L. Nirenberg, Integrability of almost-complex structures, Ann. of Math. 65 (1957), 391–404.Google Scholar
  8. 8.
    R. Jackiw, C. Nohl and C. Rebbi, Conformal Properties of Pseudoparticle Configurations, Phys.Rev.D 15 (1977), 1642–1646.Google Scholar
  9. 9.
    R. Jackiw and C. Rebbi, Degrees of Freedom in Pseudoparticle Systems, Phys.Lett. 67B (1977), 189–192.Google Scholar
  10. 10.
    R. Penrose, The Twistor Programme, Rep.Mathematical Phys. (to appear).Google Scholar
  11. 11.
    A. Schwarz, On Regular Solutions of Euclidean Yang-Mills Equations, Phys.Lett. 67B (1977), 172–174.Google Scholar
  12. 12.
    R.S. Ward, On Self-Dual Gauge Fields, Phys.Lett. 61A (1977), 81–82.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • F. Atiyah
    • 1
  1. 1.Mathematical InstituteOxford UniversityUK

Personalised recommendations