Scattering theory in quantum mechanics and asymptotic completeness

  • J. M. Combes
Main Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 80)


Scattering Theory Faddeev Equation Singular Potential Kinetic Energy Operator Scatter Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. KATO Perturbation Theory for Linear Operators Springer, New York (1966).Google Scholar
  2. [2]
    S.T. KURODA Scattering Theory for Differential Operators II. J.Math.Soc.Japan 25, 643 (1973).Google Scholar
  3. [3]
    H. EKSTEIN Theory of Time-Dependent Scattering Multichannel Processes Phys. Rev. 101, 880 (1956).CrossRefGoogle Scholar
  4. [4]
    B. SIMON, M. REED Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness Acad. Press (1975).Google Scholar
  5. [5]
    D.W. ROBINSON Scattering Theory with Singular Potentials Ann. I.H.P. 21 (1974).Google Scholar
  6. [6]
    P. FERRERO, O. de PAZZIS, D.W. ROBINSON Ann. I.H.P., 21, 217 (1974).Google Scholar
  7. [7]
    J. HOWLAND Banach Space Techniques in Perturbation Theory of Self-Adjoint Operators with Continuous Spectra J. Math. Anal. and Appl., 20, 22 (1967).Google Scholar
  8. [8]
    S. AGMON Ann. Scuol. Norm. Sup. Pisa, Ser. IV, 2, 151.Google Scholar
  9. [9]
    J.L. LIONS, E. MAGENES Problèmes aux limites non homogènes et applications Dunod, Paris (1968).Google Scholar
  10. [10]
    T. KATO Wave-Operators and Similarity for Some Non Self-Adjoint Operators Math. Ann. 162, 258 (1966).Google Scholar
  11. [11]
    T. KATO Smooth Operators and Commutators Studia Math. T. XXXI, 535 (1968).Google Scholar
  12. [12]
    T. KAKO, K. YAJIMA Spectral and Scattering Theory for a Class of Non Self-Adjoint Operators Scient. Pap. of the College of Gen. Educ., Tokyo 26, 73 (1976).Google Scholar
  13. [13]
    R. LAVINE Commutators and Scattering Theory II Ind. Univ. Math. 21, 643 (1973).Google Scholar
  14. [14]
    M. SCHECTER Scattering Theory for Elliptic Operators of Arbitrary Order Com.Math. Helv. 49, 84 (1974).Google Scholar
  15. [15]
    PINCHUK Thesis, Univ. of California, Berkeley (1975).Google Scholar
  16. [16]
    KITADA To appear.Google Scholar
  17. [17]
    J.D. DOLLARD Asymptotic Convergence and the Coulomb Interaction J. Math. Phys. 5, 729 (1964).Google Scholar
  18. [18]
    V.S. BULSLAEV and V.B. MATVEEV Wave-Operators for the Schrödinger Equation with Slowly Decreasing Potential Teoret. Mat. Fiz. 1, 367 (1970).Google Scholar
  19. [19]
    H. EKSTEIN Scattering in Field Theory Nuovo Cimento 4, 1017 (1956).Google Scholar
  20. [20]
    E. MOURRE Application de la méthode de Lavine au problème à trois corps Ann. I.H.P. vol. XXVI, 3 (1977).Google Scholar
  21. [21]
    IORIO, O' CARROL Asymptotic Completeness for Multi-Particle Schrödinger Hamiltonians with Weak Potentials Commun.math. Phys. 27, 137 (1972).Google Scholar
  22. [22]
    L.D. FADDEEV Mathematical Aspects of the Three Body Problem in the Quantum Theory of Scattering Israel Scientific Translation (1965).Google Scholar
  23. [23]
    O.A. YAKUBOVSKY On the Integral Equations in the Theory of N-Particle Systems J. Nucl. Phys. (USSR) 5, 1312 (1967).Google Scholar
  24. [24]
    R. NEWTON J. Math. Phys. 12, 1552 (1971).Google Scholar
  25. [25]
    M. COMBESCURE, J. GINIBRE Ann. Phys. 101 (1976).Google Scholar
  26. [26]
    L.E. THOMAS Asymptotic Completeness in 2 and 3 Particle Quantum Mechanical Systems Ann. Phys. 90, 127 (1975).Google Scholar
  27. [27]
    K.M. WATSON Phys. Rev. 89, 575 (1953).Google Scholar
  28. [28]
    K. YAJIMA An Abstract Stationary Approach to 3-Body Scattering To appear (presented at Oberwolfach Conference, July 1977).Google Scholar
  29. [29]
    K. HEPP On the Quantum Mechanical N-Body Problem Helv. Phys. Acta 42, 425 (1969).Google Scholar
  30. [30]
    W. THIRRING, P. URBAN The Schrödinger Equation Springer-Verlag (1977).Google Scholar
  31. [31]
    I. SIGAL Preprint E.T.H. (1977).Google Scholar
  32. [32]
    J.M. COMBES in Scattering Theory in Mathematical Physics J.A. Lavita and J.P. Marchand Ed., Reidel, Dortrecht (1974).Google Scholar
  33. [33]
    W. HUNZIKER Helv. Phys. Acta 39, 451 (1966).Google Scholar
  34. [34]
    E. BALSLEV, J.M. COMBES Spectral Properties of Schrödinger Hamiltonians with Dilation Analytic Potentials Commun.math. Phys. 22, 280 (1971).Google Scholar
  35. [35]
    A. TIP A Note on the Analyticity of the Elastic Forward Electron-Atom Exchange Scattering Amplitude Preprint FOM Institut voor Atom, Amsterdam (1977).Google Scholar
  36. [36]
    R.T. PROSSER Convergent Perturbation Expansions for Certain Wave-Operators J.M.P. 5, 708 (1964).Google Scholar
  37. [37]
    J.M. COOK Convergence of the Möller Wave-Matrix J.M.P. 36, 82 (1957).Google Scholar
  38. [38]
    M. SCHECTER A New Criterion for Scattering Theory Yeshiva Preprint (1977).Google Scholar
  39. [39]
    B. SIMON Scattering Theory and Quadratic Forms: on a Theorem of Schecter Yeshiva Preprint (1977).Google Scholar
  40. [40]
    J. HOWLAND Abstract Stationary Theory of Multichannel Scattering J. Funct. Anal. 22, 250 (1976).Google Scholar
  41. [41]
    G.A. HAGEDORN Asymptotic Completeness for a Class of Four Particle Schrödinger Operators, Preprint Univ. Princeton.Google Scholar
  42. [42]
    P. ALSHOM, T. KATO Scattering by Long-Range Potentials Proceed. Symp. in Pure Math. 23, AMS, 393 (1973).Google Scholar
  43. [43]
    L. HORMANDER The Existence of Wave-Operators in Scattering Theory Math. Z. 146, 69 (1976).Google Scholar
  44. [44]
    A. BERTHIER, P. COLLET Wave-Operators for Momentum Dependent Long-Range Potentials Preprint Univ. Paris VI.Google Scholar
  45. [45]
    P. LAX, R. PHILLIPS Scattering Theory. Academic Press, New York, 1967.Google Scholar
  46. [46]
    J.D. DOLLARD Scattering into Cones Commun.math.Phys. 12, 193 (1968) and J. Math. Phys. 14, 708 (1973).Google Scholar
  47. [47]
    J.M. COMBES, R. NEWTON, R. STOKHAMER Scattering into Cones and Flux across Surfaces Phys. Rev. D, 11, 366 (1975).Google Scholar
  48. [48]
    H. EKSTEIN Scattering without Scattering Operators Annals of Physics 74, 303 (1972).Google Scholar
  49. [49]
    W. HUNZIKER in Scattering Theory in Mathematical Physics Reidel, 1974.Google Scholar
  50. [50]
    B. SIMON Wave-Operators for Classical Particle Scattering Commun.math.Phys. 23, 37 (1971).Google Scholar
  51. [51]
    S. ALBEVERIO, R. HOEGH-KROHN Proceedings of this Conference.Google Scholar
  52. [52]
    V.P. MASLOV The Quasi-Classical Asymptotic Solutions of some Problems in Mathematical Physics Zh. Vychisl. Mat. 1, 113 (1961).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. M. Combes
    • 1
    • 2
  1. 1.Département de MathématiquesCentre Universitaire de ToulonFrance
  2. 2.Centre de Physique Théorique, CNRSMarseille

Personalised recommendations