Advertisement

Geometry of real and complex canonical transformations in quantum mechanics

  • A. Grossmann
Invited Lectures C. Symplectic Structures and Many-Body Physics
Part of the Lecture Notes in Physics book series (LNP, volume 79)

Keywords

Hilbert Space Coherent State Canonical Transformation Canonical Commutation Relation Symplectic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. AGUILAR and J.M. COMBES Comm. math. Phys. 22, 269–279 (1971).Google Scholar
  2. [2]
    R.F.V. ANDERSON J. Funct. An. 4, 240–269 (1969).Google Scholar
  3. [2a]
    J. Funct. An. 6, 110–115 (1970).Google Scholar
  4. [2b]
    J. Funct. An. 9 (1972).Google Scholar
  5. [3]
    J.P. ANTOINE and A. GROSSMANN J. Funct. An. 23, 369–378 (1976).Google Scholar
  6. [3a]
    J. Funct. An. 23, 379–391 (1976).Google Scholar
  7. [4]
    V.I. ARNOLD Functional Analysis and Applications (russian) 1, 1 (1967).Google Scholar
  8. [5]
    N. ARONSZAJN Trans. Am. Math. Soc. 68, 337–404 (1950).Google Scholar
  9. [6]
    E. ARTIN Geometric algebra, Interscience 1957.Google Scholar
  10. [7]
    D. BABBIT Certain Hilbert spaces of analytic functions associated with the Heisenberg group, Studies in Mathematical Physics (Essays in honor of V. Bargmann, ed. E.H. Lieb, B. Simon, A.S. Wightman), Princeton Univ. Press 1976, page 19.Google Scholar
  11. [8]
    D. BABBIT and E. BALSLEV J. Funct. An. 18, 1 (1975).Google Scholar
  12. [9]
    G.A. BAKER Phys. Rev. 109, 2198 (1958).Google Scholar
  13. [10]
    E. BALSLEV Comm. math. Phys. 52, 127 (1977).Google Scholar
  14. [11]
    D. BABBIT and E. BALSLEV Comm. math. Phys. 35, 173–179 (1974).Google Scholar
  15. [12]
    E. BALSLEV and J.M. COMBES Comm. math. Phys. 22, 280–299 (1971).Google Scholar
  16. [13]
    V. BARGMANN Comm. Pure and Appl. Math. 14, 187–214 (1961).Google Scholar
  17. [14]
    V. BARGMANN Comm. Pure and Appl. Math. 20, 1–101 (1967).Google Scholar
  18. [15]
    V. BARGMANN Group representations in Hilbert spaces of analytic functions (Analytic Methods in Physics, R. Newton Ed.) pp. 27–63.Google Scholar
  19. [16]
    F.A. BEREZIN Comm. math. Phys. 40, 153 (1975).Google Scholar
  20. [17]
    F.A. BEREZIN Mat. Sbornik 86, (128) (1971) No4. Math. USSR Sbornik Vol. 1J (1971) No4.Google Scholar
  21. [18]
    F.A. BEREZIN and M.A. SUBIN Symbols of Operators and Quantization (Colloquia Mathematica Societatis Janos Boylai, 5; Hilbert space operators, B. Sz Nagy ed. Tihany, Hungary 1970)/Google Scholar
  22. [19]
    P. BERNAT, N. CONZE, M. DUFLO, M. LEVY-NAHAS, M. RAIS, P. RENOUARD, M. VERGNE Representations de groupes de Lie résolubles, Mém. Soc. Math. France 4, (1972).Google Scholar
  23. [20]
    R.J. BLATTNER Quantization and representation theory, Proc. Symp. Pure Math. Vol. 26, Am. Math. Soc. Providence R.I. (1974).Google Scholar
  24. [21]
    R.J. BLATTNER The metalinear geometry of non-real polarizations Conference on Differential Geometrical Methods in Mathematical Physics Universität Bonn, 1–4 July 1975 (Lecture Notes in Math., Vol.570).Google Scholar
  25. [22]
    M. BRUNET and P. KRAMER Complex extension of the representation of the symplectic group associated with the canonical commutation relations, Preprint University of Tübingen.Google Scholar
  26. [23]
    G. BURDET, M. PERRIN, M. PERROUD Generating functions for the affine symplectic group, Preprint U.of Montreal.Google Scholar
  27. [24]
    J.M. COMBES and L. THOMAS Comm. math. Phys. 34, 251–270 (1970).Google Scholar
  28. [25]
    R. CRESSMAN J. Funct. An. 22, 405 (1976).Google Scholar
  29. [26]
    I. DAUBECHIES and A. GROSSMANN in preparation.Google Scholar
  30. [27]
    U. Fano Rev. Mod. Phys. 29, 74Google Scholar
  31. [28]
    A. GROSSMANN Comm. math. Phys. 48, 191 (1976).Google Scholar
  32. [29]
    A. GROSSMANN and P. HUGUENIN in preparation.Google Scholar
  33. [30]
    A. GROSSMANN, G. LOUPIAS and E.M. STEIN Ann. Inst. Fourier 18, 343 (1968).Google Scholar
  34. [31]
    P. HUGUENIN Zeitsch. für Naturf. 28a, 1090 (1968).Google Scholar
  35. [32]
    P. IMRE, E. OZIZMIR, M. ROSENBAUM, P.F. ZWEIFEL Journ. Math. Phys. 8 1097Google Scholar
  36. [33]
    C. ITZYKSON Comm. math. Phys. 4, 92Google Scholar
  37. [34]
    D. KASTLER Comm. math. Phys. 1, 14–48 (1965). Lecture Notes (Argonne Nat. Lab).Google Scholar
  38. [35]
    P. KRAMER, M. MOSHINSKY and T.H. SELIGMAN Complex extensions of canonical transformations and quantum mechanics, in Loebl, Ed: Group Theory and its applications, vol. III (1975).Google Scholar
  39. [36]
    P. KRAMER and D. SCHENZLE Revista Mexicana de Fisica, 22, 25 (1973).Google Scholar
  40. [37]
    P. KRAMER Composite particles and symplectic (semi) groups, Proc. VI Int. Coll. Group theoretical methods in physics, Tübingen 1977.Google Scholar
  41. [38]
    H.A. KRAMERS Quantum mechanics (North-Holland) 1964, pp. 157–158.Google Scholar
  42. [39]
    J.G. KRUGER and A. POFFYN Physica 77AGoogle Scholar
  43. [40]
    R.B. LAVINE The Weyl transform: Fourier analysis of operators in L2-spaces, Ph.D. Thesis M.I.T. 1965.Google Scholar
  44. [41]
    J. LERAY Coll. Int. CNRS no 237 (Juin 1974) Aix-en-Provence, Géometrie symplectique et physique mathématique, edition du CNRS 1975, p. 237.Google Scholar
  45. [42]
    G. LOUPIAS and S. MIRACLE-SOLE Comm. math. Phys. 2, 31 (1966).Google Scholar
  46. [43]
    G. MACKEY in Functional analysis and related fields, F. Browder, ed., Springer 1970.Google Scholar
  47. [44]
    M. MOSHINSKY Canonical transformations and quantum mechanics, (Lectures and collection of papers) Escuola Latino-Americana de Fisica, 1974.Google Scholar
  48. [44a]
    M. MOSHINSKY and M. QUESNE Journ. Math. Phys. 12 1772 (1971).Google Scholar
  49. [44b]
    M. MOSHINSKY SIAM J. Appl. Math. 25, 193 (1973).Google Scholar
  50. [45]
    J.E. MOYAL Proc. Camb. Phil. Soc. 45, 299 (1949)Google Scholar
  51. [46]
    J.C. POOL J. Math. Phys. 7, 66 (1966).Google Scholar
  52. [47]
    E.T. POULSEN Quantization in Hamiltonian Particle dynamics Lecture notes in Mathematics 399, Springer, Berlin 1974.Google Scholar
  53. [48]
    E.A. REMLER Ann. Phys. 95, 455–495 (1975).Google Scholar
  54. [49]
    I. SATAKE Advances Math. 7, 83–110 (1971).Google Scholar
  55. [50]
    I.E. SEGAL Math. Scand. 13, 31–43 (1963).Google Scholar
  56. [51]
    I.E. SEGAL The complex-wave representation of the free boson field, M.I.T. Preprint.Google Scholar
  57. [52]
    B. SIMON Ann.Math. 97, 247–274 (1973).Google Scholar
  58. [53]
    S. STERNBERG Proc. VIth Int. Coll. Group Theoretical Methods in Physics, Tübingen, 1977.Google Scholar
  59. [53a]
    V. GUILLEMIN and S. STERNBERG Geometric Asymptotics, A.M.S.Google Scholar
  60. [54]
    D. SHALE Trans. Am. Math. Soc. 103, 149 (1962).Google Scholar
  61. [55]
    J.M. SOURIAU Structure des Systèmes Dynamiques, Dunod 1970. Proceedings of the 4th Int. Coll. Group Theoretical Methods in Physics, Nijmegen, 1975, A. Janner et al., eds.Google Scholar
  62. [56]
    A. WEIL Acta Math. 111, 143 (1963).Google Scholar
  63. [57]
    H. WEYL Theory of Groups and Quantum Mechanics (English Translation, Dover 1950).Google Scholar
  64. [58]
    E. WINTER Phys. Rev. 40, 749 (1932).Google Scholar
  65. [59]
    R.J. GLAUBER Phys. Rev. 131, 2766 (1963).Google Scholar
  66. [60]
    J.R. KLAUDER J. Math. Phys. 11, 609 (1970).Google Scholar
  67. [61]
    C. van WINTER J. Math. An. Appl. 47, 633-48, 368 (1974).Google Scholar
  68. [62]
    B. KOSTANT Lecture Notes in Math. Vol. 170, Springer Verlag, Berlin 1970, pp. 237–253.Google Scholar
  69. [62a]
    B. KOSTANT, Symposia Math. Vol. XIV, Academic Press, London 1974, pp. 139–152.Google Scholar
  70. [63]
    A. VOROS An Algebra of Pseudodifferential Operators and Asymptotics of Quantum Mechanics, Preprint, submitted to Journ. Funct. Anal.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • A. Grossmann
    • 1
  1. 1.Centre de Physique Théorique C.N.R.S.Marseille

Personalised recommendations